Liang Pan
·
Jingbo Wang
·
Buzhen Huang
·
Junyu Zhang
·
Haofan Wang
·
Xu Tang
·
Yangang Wang
Southeast University Shanghai AI Laboratory Xiaohongshu Inc.
Our framework enables physically simulated characters to perform long-term interaction tasks in diverse and complex 3D scenes via composing reusable skills that include sitting (gray), getting up (blue), and avoiding obstacles (red).
- [Nov. 9, 2023] Code for training and evaluating the sit policy released.
- [Oct. 16, 2023] Paper accepted to 3DV 2024. We plan to release the code in mid-November 2023.
To create the environment, follow the following instructions:
- We recommend to install all the requirements through Conda by
conda create -n rlgpu python=3.7
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
- Download IsaacGym Preview 4 from the official site and install it via pip.
To prepare data for training/evaluating InterCon (sit & get-up policies), follow the following instructions:
-
Download SMPL-X v1.1 from the official site. Put them in the
body_models/smplx
folder. -
Download SAMP motion dataset from the official site. Put them in the
samp
folder. Please download Motion Clips (.pkl), which contains the SMPL-X parameters. -
The file structure should look like this:
|-- InterScene
|-- body_models
|-- smplx
|-- SMPLX_FEMALE.npz
|-- SMPLX_FEMALE.pkl
|-- SMPLX_MALE.npz
|-- ...
|-- samp
|-- chair_mo_stageII.pkl
|-- chair_mo001_stageII.pkl
|-- chair_mo002_stageII.pkl
|-- ...
- Run the following script to generate reference motion dataset:
python InterScene/data/dataset_samp_sit/generate_motion.py --samp_pkl_dir ./samp --smplx_dir ./body_models/smplx
- Run the following script to generate 3D object dataset:
python InterScene/data/dataset_samp_sit/generate_obj.py
## training sit policy
python InterScene/run.py --task HumanoidLocationSit --cfg_env InterScene/data/cfg/humanoid_location_sit.yaml --cfg_train InterScene/data/cfg/train/rlg/amp_task_location_sit.yaml --motion_file InterScene/data/dataset_samp_sit/dataset_samp_sit.yaml --num_envs 4096 --headless
## evaluating sit policy
python InterScene/run.py --task HumanoidLocationSit --cfg_env InterScene/data/cfg/humanoid_location_sit.yaml --cfg_train InterScene/data/cfg/train/rlg/amp_task_location_sit.yaml --motion_file InterScene/data/dataset_samp_sit/dataset_samp_sit.yaml --num_envs 4096 --headless --checkpoint InterScene/data/models/policy_sit.pth --test
@inproceedings{pan2023synthesizing,
title={Synthesizing Physically Plausible Human Motions in 3D Scenes},
author={Liang Pan and Jingbo Wang and Buzhen Huang and Junyu Zhang and Haofan Wang and Xu Tang and Yangang Wang},
booktitle={International Conference on 3D Vision (3DV)},
year={2024}
}
This repository is built on top of the following amazing repositories:
Please follow the license of the above repositories for usage of that part of the codebase.