SF-Visuals

screenshot

Citing This Work

If you use sf-visuals please cite our paper

@misc{bungert2023understanding,
      title={Understanding Silent Failures in Medical Image Classification},
      author={Till J. Bungert and Levin Kobelke and Paul F. Jaeger},
      year={2023},
      eprint={2307.14729},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Note
This repository contains the visualization tool only. The benchmark part of our paper is integrated into fd-shifts.

Table Of Contents

Installation

Currently, this depends on fd-shifts, please check out its installation instructions first.

pip install git+https://github.com/iml-dkfz/sf-visuals.git

Usage

Experiment Folder Setup

Collect all of your experiments in a folder, with one experiment per subfolder. Experiment subfolders need to contain the following files:

For a classifier with l latent space dimensions and d outputs and N samples in total (over all tested datasets) and for M dropout samples

raw_outputs.npz

Shape: Nx(d+2)


  0, 1, ...                 d─1,   d,      d+1
┌───────────────────────────────┬───────┬─────────────┐
|           softmax_1           | label | dataset_idx |
├───────────────────────────────┼───────┼─────────────┤
|           softmax_2           | label | dataset_idx |
├───────────────────────────────┼───────┼─────────────┤
|           softmax_3           | label | dataset_idx |
└───────────────────────────────┴───────┴─────────────┘
.
.
.
┌───────────────────────────────┬───────┬─────────────┐
|           softmax_N           | label | dataset_idx |
└───────────────────────────────┴───────┴─────────────┘

encoded_output.npz

Shape: Nx(l+1)

  0, 1, ...                 l─1,   l
┌───────────────────────────────┬─────────────┐
|           encoded1            | dataset_idx |
├───────────────────────────────┼─────────────┤
|           encoded2            | dataset_idx |
├───────────────────────────────┼─────────────┤
|           encoded3            | dataset_idx |
└───────────────────────────────┴─────────────┘
.
.
.
┌───────────────────────────────┬─────────────┐
|           encodedN            | dataset_idx |
└───────────────────────────────┴─────────────┘

external_confids.npz

Shape: Nx1

raw_outputs_dist.npz

Shape: NxdxM

  0, 1, ...                  d─1
┌───────────────────────────────┐
|  softmax_1 (Dropout Sample 1) |
|  softmax_1 (Dropout Sample 2) |
|               .               |
|               .               |
|               .               |
|  softmax_1 (Dropout Sample M) |
├───────────────────────────────┤
|  softmax_2 (Dropout Sample 1) |
|  softmax_2 (Dropout Sample 2) |
|               .               |
|               .               |
|               .               |
|  softmax_2 (Dropout Sample M) |
├───────────────────────────────┤
|  softmax_3 (Dropout Sample 1) |
|  softmax_3 (Dropout Sample 2) |
|               .               |
|               .               |
|               .               |
|  softmax_3 (Dropout Sample M) |
└───────────────────────────────┘
                .
                .
                .
┌───────────────────────────────┐
|  softmax_N (Dropout Sample 1) |
|  softmax_N (Dropout Sample 2) |
|               .               |
|               .               |
|               .               |
|  softmax_N (Dropout Sample M) |
└───────────────────────────────┘

external_confids_dist.npz

NxM

attributions.csv

...,filepath,...
...,path/to/image01.jpg,...
...,path/to/image02.jpg,...
...,path/to/image03.jpg,...
.
.
.
...,path/to/imageN.jpg,...

config.yaml

eval:
    val_tuning: true  # or false, whether or not the first dataset_idx refers to a validation set
    confidence_measures:
        test:  # list of confidences
        - msr
        - dg
        - confidnet
        ...
    query_studies:  # key-value pairs where values are either datasets or list of datasets
        iid_study: dataset01
        ...

data:
    dataset: my_dataset  # name of the training set

Running the Tool

sf-visuals --experiments-path /path/to/experiments/folder --data-path /path/to/datasets

Acknowledgements