RVC v2 with Crepe, for AI music covers.
docker run \
--name="rvc-v2-crepe" \
-v ./logs:/app/logs \
-v ./weights:/app/weights \
-v ./inputs:/app/inputs \
-v ./outputs:/app/audio-outputs \
-v ./temp-outputs:/app/TEMP/gradio \
-p "7865:7865" \
--gpus="all" \
ilshidur/rvc-2.0-crepe
# docker-compose.yml
version: '3.3'
services:
rvc-2-0-crepe:
image: ilshidur/rvc-2.0-crepe
container_name: rvc-2-0-crepe
volumes:
- ./logs:/app/logs
- ./weights:/app/weights
- ./inputs:/app/inputs
- ./outputs:/app/audio-outputs
- ./temp-outputs:/app/TEMP/gradio
ports:
- "7865:7865"
deploy: # --gpus all
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
Then run :
docker compose up --build
/app/logs
(Optional) :.index
files. Recommended to follow the following pattern :logs/<modelname>/<arbitrary name>.index
./app/weights
: the.pth
files containing the voice models./app/inputs
: the input.wav
files to infer./app/audio-outputs
: the final audio outputs./app/TEMP/gradio
(Optional) : temporary audio outputs.
As this is a Gradio app, you can interact with it using the WebSocket API to automate voice cloning.
Check out the example
folder to have an insight of a Node.js client infering an audio file using a pre-existing model.
Please note that this example is just a code sample, not a fully working project.