This tool can be used to analyze the model run time, GPU memory usage, input/output information of each layer, and FLOPs of each layer in PyTorch models.
The run time, GPU memory usage, and FLOPs are analyzed at the cuda operator level, which is more accurate than the existing module-based analysis. Even model with custom operators can be analyzed.
Install from pip:
pip install torch-analyzer
Install from source:
git clone https://github.com/IrisRainbowNeko/torch-analyzer.git
cd torch-analyzer
pip install -e .
Example:
import torch
import torchvision.models as models
from torchanalyzer import ModelTimeMemAnalyzer, TorchViser
model = models.resnet18().cuda()
inputs = torch.randn(1, 3, 224, 224).cuda()
analyzer = ModelTimeMemAnalyzer(model)
info = analyzer.analyze(inputs)
TorchViser().show(model, info)
Analyze run time of each layer:
from torchanalyzer import ModelTimeMemAnalyzer
analyzer = ModelTimeMemAnalyzer(model)
info = analyzer.analyze(inputs)
Analyze input/output information of each layer:
from torchanalyzer import ModelIOAnalyzer
analyzer = ModelIOAnalyzer(model)
info = analyzer.analyze(inputs)
Analyze flops of each layer:
from torchanalyzer import ModelFlopsAnalyzer
analyzer = ModelFlopsAnalyzer(model)
info = analyzer.analyze(inputs)
Show with the style like print(model)
in torch:
from torchanalyzer import TorchViser
TorchViser().show(model, info)
Show with table style:
from torchanalyzer import TableViser
TableViser().show(model, info)
Show with flow style:
from torchanalyzer import FlowViser
FlowViser().show(model, info)
Analyze run time and memory of each layer in backward:
from torchanalyzer import ModelTimeMemAnalyzer
analyzer = ModelTimeMemAnalyzer(model)
info = analyzer.analyze(inputs, with_backward=True)