/cylinder

Primary LanguageJupyter NotebookMIT LicenseMIT

cylinder

This file will become your README and also the index of your documentation.

Install

pip install cylinder

This basic model provides the core function for a step change calculation in a mixed hot water cylinder

How to use

Load some data that can be used to test the model - flow and electricity pricing

df = (pd.DataFrame(load_demand(path = Path('../data/drawprofiles'),bed=3,unit=3)))
df.columns=["flow"]
df = df.merge(load_power(path = Path('../data')), how='left', left_index=True, right_index=True)
df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
flow price price_kw date week hour day peak tou cost n_cost sr_cost lr_cost
timestamp
2020-01-01 00:00:00 0.0 7.920 0.007920 2020-01-01 1 0 2 0 0.02 0.027920 -0.22080 0.162438 0.149272
2020-01-01 00:01:00 0.0 8.526 0.008526 2020-01-01 1 0 2 0 0.02 0.028526 -0.21474 0.158675 0.145694
2020-01-01 00:02:00 0.0 9.132 0.009132 2020-01-01 1 0 2 0 0.02 0.029132 -0.20868 0.155010 0.142235
2020-01-01 00:03:00 0.0 9.738 0.009738 2020-01-01 1 0 2 0 0.02 0.029738 -0.20262 0.151437 0.138888
2020-01-01 00:04:00 0.0 10.344 0.010344 2020-01-01 1 0 2 0 0.02 0.030344 -0.19656 0.147952 0.135645

Create a hot water cylinder object and initialise it with the data

hwc = HWC(T_set=68, T_deadband=2, element=3000, radius=.25, height=1)
print(f'The HWC volume is {int(hwc.Volume*1000)} liters')
The HWC volume is 196 liters

Default thermogram

plt.imshow(hwc.thermogram)
<matplotlib.image.AxesImage>

Run the model for a single day on thermostat and plot the results

results = []

for index, row in df[:24*60].iterrows():
  raw_flow = row['flow']
  hwc.flow = raw_flow*(hwc.T_demand-hwc.T_cold)/(hwc.T-hwc.T_cold)
  hwc._thermostat()
  hwc.T = hwc._update_temperatures(action=1)
  results.append([index,hwc.T, hwc.thermostat, hwc.flow,row.cost])
  r,c = row.day, row.hour
  hwc.thermogram[r,c] = hwc.thermostat * 1 * hwc.Q /60 + hwc.thermogram[r,c]*(1- 0.1)

results = pd.DataFrame(results, columns=['time','T','thermostat','flow','cost']).set_index('time')
plt.imshow(hwc.thermogram)
<matplotlib.image.AxesImage>

fig, ax = plt.subplots(nrows=2, figsize=(12,6), sharex=True)
ax[0].plot(results['T'])
ax[0].set_ylabel('°C')
ax[0].set_title('Temperature')
ax[1].plot(results['thermostat'])
ax[1].xaxis.set_major_formatter(mdates.DateFormatter("%H:%M"))
ax[1].xaxis.set_minor_formatter(mdates.DateFormatter("%H:%M"))

Passive Cooling

hwc = HWC(T_set=68, T_deadband=2, element=3000, radius=.25, height=1)
results = []
for index, row in df[:24*60].iterrows():
  raw_flow = 0
  hwc.flow = raw_flow*(hwc.T_demand-hwc.T_cold)/(hwc.T-hwc.T_cold)
  hwc._thermostat()
  hwc.T = hwc._update_temperatures(action=0)
  results.append([index,hwc.T, hwc.thermostat, hwc.flow,row.cost])
  r,c = row.day, row.hour
  hwc.thermogram[r,c] = hwc.thermostat * 1 * hwc.Q /60 + hwc.thermogram[r,c]*(1- 0.1)
results = pd.DataFrame(results, columns=['time','T','thermostat','flow','cost']).set_index('time')
fig, ax = plt.subplots(nrows=2, figsize=(12,6), sharex=True)
ax[0].plot(results['T'])
ax[0].set_ylabel('°C')
ax[0].set_title('Temperature')
ax[1].plot(results['thermostat'])
ax[1].xaxis.set_major_formatter(mdates.DateFormatter("%H:%M"))
ax[1].xaxis.set_minor_formatter(mdates.DateFormatter("%H:%M"))

plt.imshow(hwc.thermogram)
<matplotlib.image.AxesImage>