Updates on 18 Apr 2019
- Fixed some errors
- Added Dynamic KPCA(DKPCA)
four demos are provided:
demo1: dimensionality reduction or feature extraction
demo2: fault detection for a numerical example
demo3: fault detection and fault diagnosis for TE process using KPCA
demo4: fault detection and fault diagnosis for TE process using Dynamic KPCA(DKPCA)
load circledata
X = circledata;
figure
for i = 1:4
scatter(X(1+250*(i-1):250*i,1),X(1+250*(i-1):250*i,2))
hold on
end
% Train KPCA model
model = kpca_train(X,'type',0,'sigma',5,'dims',2);
% Visualize the result of dimensionality reduction
figure
for i = 1:4
scatter(model.mappedX(1+250*(i-1):250*i,1), ...
model.mappedX(1+250*(i-1):250*i,2))
hold on
end
% Training data and Test data
X = rand(200,10);
Y = rand(100,10);
Y(20:40,:) = rand(21,10)+3;
Y(60:80,:) = rand(21,10)*3;
% Train KPCA model
model = kpca_train(X,'type',1,'sigma',60);
% Test a new sample Y (vector of matrix)
model = kpca_test(model,Y);
% Plot the result
plotResult(model.SPE_limit,model.SPE_test);
plotResult(model.T2_limit,model.T2_test);
% load TE process data
load train
load test
% Normalization
[X, Y] = normalize(train,test);
% Train KPCA model
model = kpca_train(X,'type',1,'sigma',800,'fd',1);
% Test a new sample Y (vector of matrix)
model = kpca_test(model,Y);
% Plot the result
plotResult(model.SPE_limit,model.SPE_test);
plotResult(model.T2_limit,model.T2_test);
% Fault diagnosis
[CPs_T2_test_s, CPs_SPE_test_s] = CPsKPCA(X,Y,model, ...
'start_time',300,'end_time',500,'theta',0.7);
% Plot Contribution Plots
plotCPs(CPs_SPE_test_s)
plotCPs(CPs_T2_test_s)