GMT: A deep learning approach to generalized multivariate translation for scientific data analysis and visualization
PyTorch implementation of the paper GMT: A deep learning approach to generalized multivariate translation for scientific data analysis and visualization
- Linux
- Python >= 3.7
- CUDA >= 11.3
- PyTorch >= 1.11.0
- NumPy
- RAM >= 32GB
- VRAM >= 16GB
The volume contains little-endian floats in column-major order (z-axis, y-axis, x-axis).
Pretrain GMT for 500 epochs
python3 pretrain.py --data_path /your/data/path --model_path /your/model/path --max_epoch 500 --dataset dataset_name
Fine-tune GMT for 4000 epochs
python3 train.py --data_path /your/data/path --model_path /your/model/path --max_epoch 4000 --dataset dataset_name
Inference using a trained GMT model (translating 0th variable to 1st variable)
python3 inference.py --data_path /your/data/path --model_path /your/model/path --epoch 4000 --dataset dataset_name --source 0 --target 1
@article{Yao-GMT-CG23,
title = {{GMT}: A deep learning approach to generalized multivariate translation for scientific data analysis and visualization},
journal = {Computers \& Graphics},
volume = {112},
pages = {92-104},
year = {2023},
author = {Siyuan Yao and Jun Han and Chaoli Wang}
}
This research was supported in part by the U.S. National Science Foundation through grants IIS-1955395, IIS-2101696, and OAC-2104158, and the U.S. Department of Energy through grant DE-SC0023145.