/image-captioning

Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Primary LanguagePython

Introduction

This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here.

Please cite with the following BibTeX:

@inproceedings{xlinear2020cvpr,
  title={X-Linear Attention Networks for Image Captioning},
  author={Pan, Yingwei and Yao, Ting and Li, Yehao and Mei, Tao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Requirements

Data preparation

  1. Download the bottom up features and convert them to npz files
python2 tools/create_feats.py --infeats bottom_up_tsv --outfolder ./mscoco/feature/up_down_10_100
  1. Download the annotations into the mscoco folder. More details about data preparation can be referred to self-critical.pytorch

  2. Download coco-caption and setup the path of __C.INFERENCE.COCO_PATH in lib/config.py

  3. The pretrained models and results can be downloaded here.

  4. The pretrained SENet-154 model can be downloaded here.

Training

Train X-LAN model

bash experiments/xlan/train.sh

Train X-LAN model using self critical

Copy the pretrained model into experiments/xlan_rl/snapshot and run the script

bash experiments/xlan_rl/train.sh

Train X-LAN transformer model

bash experiments/xtransformer/train.sh

Train X-LAN transformer model using self critical

Copy the pretrained model into experiments/xtransformer_rl/snapshot and run the script

bash experiments/xtransformer_rl/train.sh

Evaluation

CUDA_VISIBLE_DEVICES=0 python3 main_test.py --folder experiments/model_folder --resume model_epoch

Acknowledgements

Thanks the contribution of self-critical.pytorch and awesome PyTorch team.