These common credit score data sets are collected to empirical evaluations, and I will update dynamically.
-
UCI Repository:
(1.1) German: http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
or Kaggle url: https://www.kaggle.com/uciml/german-credit
(1.2) Australian: http://archive.ics.uci.edu/ml/datasets/Statlog+%28Australian+Credit+Approval%29
(1.3) Taiwan: http://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
or Kaggle url:https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset
(1.4) Japan: http://archive.ics.uci.edu/ml/datasets/Japanese+Credit+Screening
(1.5) Polish: http://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data
Reference:
(1.1; 1.2; 1.4; 1.5): M. Lichman, UCI machine learning repository, School of Information and Computer Science, University of California, Irvine, CA, http://archive.ics.uci.edu/ml/, (2013) , Accessed date: 1 September 2018.
(1.3): I.C. Yeh, C.h. Lien, The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients, Expert Syst. Appl. 36 (2009) 2473–2480.
-
PAKDD 2009 Data Mining Competition:
(2.1) pakdd 2009:
link1: http://sede.neurotech.com.br/PAKDD2009 (temporarily inaccessible) link2: https://pakdd.org/archive/pakdd2009/front/show/competition.html
Reference: PAKDD data mining competition 2009, Credit risk assessment on a private label credit card application (2009), http://sede.neurotech.com.br/PAKDD2009
-
Kaggle:
(3.1) Give Me Some Credit(gmsc): https://www.kaggle.com/c/GiveMeSomeCredit
(3.2) Home Credit Default Risk: https://www.kaggle.com/c/home-credit-default-risk/data
(3.3) Credit Card Data from book "Econometric Analysis": https://www.kaggle.com/dansbecker/aer-credit-card-data
-
Financial institutions in the Benelux(Belgium, The Netherlands and Luxembourg) and UK:
(4.1) bene1
(4.2) bene2
(4.3) uk
Reference: B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, J. Vanthienen, Benchmarking state-of-the-art classification algorithms for credit scoring, Journal of the Operational Research Society 54 (6) (2003) 627–635.
-
Thomas: More information see reference [Thomas 2002]
(5.1) thomas
Reference: L.C. Thomas, D.B. Edelman, J.N. Crook, Credit Scoring and its Applications, SIAM, Philadelphia, 2002.
-
Credit risk analysis: http://www.creditriskanalytics.net
(6.1) hmeq: http://www.creditriskanalytics.net/uploads/1/9/5/1/19511601/hmeq.csv
(6.2) Mortgage: http://www.creditriskanalytics.net/uploads/1/9/5/1/19511601/mortgage_csv.rar
(6.3) LGD: http://www.creditriskanalytics.net/uploads/1/9/5/1/19511601/lgd.csv
(6.4) Ratings: http://www.creditriskanalytics.net/uploads/1/9/5/1/19511601/ratings.csv
Reference: B. Baesens, D. Roesch, H. Scheule, Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS,
-
Lending club:
(7.1) Lending club: https://www.lendingclub.com/info/download-data.action
(7.2) A ton of LendingClub datasets on Kaggle: https://www.kaggle.com/datasets?sortBy=relevance&group=public&search=lending%20club&page=1&pageSize=20&size=all&filetype=all&license=all