conda create -n JSALT python=3.11.5
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
python encoder_pretraining.py \
--config_file spoter2/configs/basic_config_how2sign.yaml \
--wandb_api_key <your_wandb_api_key> \
--tags pre_training \
--train_file <path/to>/H2S_train.h5 \
--val_file <path/to>/How2Sign_val.h5 \
--checkpoint_folder checkpoints
python classification_training.py \
--config_file spoter2/configs/basic_config_wlasl.yaml \
--wandb_api_key <your_wandb_api_key> \
--tags classification_training \
--train_file <path/to>/WLASL100_train_25fps.csv \
--val_file <path/to>/WLASL100_val_25fps.csv \
--num_classes 100 \
--checkpoint <path/to/checkpoint.pth>
Bootstrap: docker
From: nvcr.io/nvidia/pytorch:23.10-py3
%post
apt-get update
apt-get install -y libsm6 libxext6 libxrender-dev
pip install packaging==23.2
pip install tqdm==4.66.1
pip install torchmetrics==1.2.0
pip install wandb==0.16.0
pip install pandas==2.1.3
pip install h5py==3.11.0