- Project name:
beHappy
- Authors:
Jakub Stanula-Kaczka
,Wiktor Koźlik
,Piotr Chajec
- Project form: Google Chrome extension with predicting model exposed on
localhost
moderatingreddit.com
comments.
- python
- tensorflow
- keras
- numpy
- sklearn
- nltk
- pandas
- matplotlib
- flask
- flask_cors
Install all required dependencies with:
pip install -r requirements.txt
Name | Download |
---|---|
Twitter Toxicity Sentiment Analysis | link |
-
Train
Run all cells in .ipynb notebook model and tokenizer will be saved in it's directory
-
Test & Run
In order to load extension go to
Extensions
-> SetDeveloper Mode
in upper right cornet toOn
-> On Upper left corner select this repository directory by clicking onLoad unpacked
Generally speaking you don't need to train model from scratch. You could use pretrained models contained in
/python_api
directory. Python script uses relative path so it does need to be run in folder with model and tokenizers files. You can test different models by changing it's names inmain.py
file.cd python_api python main.py
- By default all paragraphs containing offensive language are blured. To see moderated content simply hower mouse on it.
- It is possible to disable blurring completely. See extension menu for futher details.
|—— .DS_Store
|—— .gitignore
|—— background.js
|—— Ai4Youth_beHappy.ipynb
|—— beHappy in English.pptx
|—— beHappy po Polsku.pptx
|—— blur.css
|—— contentScript.js
|—— content_img
| |—— 0.png
| \—— 1.png
|—— images
| |—— ai_icon128.png
| |—— ai_icon16.png
| |—— ai_icon32.png
| |—— ai_icon48.png
| \—— ai_icon64.png
|—— manifest.json
|—— popup.css
|—— popup.html
|—— popup.js
\—— python_api
|—— Dense128.h5
|—— Dense32-new-tfidf.h5
|—— Dense32.h5
|—— Dense64.h5
|—— Dense8-4.h5
|—— main.py
|—— model.h5
|—— model2.h5
|—— tfidf-2.dat
|—— tfidf-3.dat
|—— tfidf.dat
\—— tokenizer_twitter_save.dat
- software
OS: macOS Monterey 12.5, Windows 10 Python: 3.9+ Tensorflow: latest compiled version as for 16.10.2022, 2.8.2
- hardware
CPUs: Apple Silicon M1 8 cores, Intel i5-9300h, Intel i5-7400 GPUs: Apple Silicon M1 8 cores, Nvidia GeForce GTX 1650, Nvidia GTX 1660 Super
- RAM
Trained on platforms with at least 12GB of RAM
- Ai4Youth resources
- Keras documentation
- Stack Overflow
- Our project's repository