A code base for testing btc trade algorithm
train with holding_amount_data and btc price, model selected from LinearRegression, SVR, KNeighborsRegressor
python btc_model.py \
--grid_search False \
--read_path './data' \
--save_path './output' \
--train
eval model without training, assuming there is model existed in output directory
python btc_model.py \
-- save_path './output' \
--train False
- Eval Mode: test trained model, return prediction with given data
- Plotting: draw price and prediction in real time
- More auxiliary data: e.g. mood data
- Model's Parameter Search: random search, bayesian
- Advanced Model: RNN coming