/OIFTrack

Primary LanguagePythonMIT LicenseMIT

OIFTrack

Transformer Tracking using Optimized Information Flow

[Models][Raw Results]

Framework

Environment

Our experiments are conducted with Ubuntu 18.04.6 and CUDA 11.4 (python=3.8).

Preparation

  • Download the pre-trained MAE ViT-Base weights and place the file into the pretrained_models directory under OIFTrack project path.

  • Download the training datasets ( GOT-10k, TrackingNet, LaSOT, COCO2017) and testing dataset (UAV123) to your disk.

    Organized directory should look like:
    
      ```
      --GOT10k/
      	|--test
      	|--train
      	|--val
      --TrackingNet/
      	|--TRAIN_0
      	|...
      	|--TEST
      --LaSOT/
      	|--airplane-1
      	|...
      	|--zebra-20
      --COCO/
      	|--annotations
      	|--images
      --UAV123/
      	|--anno
      	|--data_seq
      ```
    
  • Run the following command to set paths for this project

    python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
    

    After running this command, you can also modify paths by editing these two files

    lib/train/admin/local.py  # paths about training
    lib/test/evaluation/local.py  # paths about testing
            
    

Training

  • Multiple GPU training

    python tracking/train.py --script oiftrack --config vitb_256_mae_ce_all_dataset --save_dir ./output --mode multiple --nproc_per_node 4 --use_wandb 1
    

    Replace --config with the desired model config under experiments/oiftrack. We use wandb to record detailed training logs.

  • Single GPU training

    python tracking/train.py --script oiftrack --config vitb_256_mae_ce_all_dataset --save_dir ./output --mode single --use_wandb 1
    
  • For GOT-10k Training, set the --config to vitb_256_mae_ce_got10k.

Evaluation

  • Make sure you have prepared the trained model or download the model weights from Google Drive (Put the downloaded weights on $PROJECT_ROOT$/output/checkpoints/train/oiftrack)

    • GOT10K-test

      python tracking/test.py oiftrack vitb_256_mae_ce_got10k --dataset got10k_test --threads 0 --num_gpus 1
      python lib/test/utils/transform_got10k.py --tracker_name oiftrack --cfg_name vitb_256_mae_ce_got10k
      

      Then upload $PROJECT_ROOT$/output/test/tracking_results/oiftrack/vitb_256_mae_ce_got10k/got10k_submit.zip to the online evaluation server.

    • TrackingNet

      python tracking/test.py oiftrack vitb_256_mae_ce_all_dataset --dataset trackingnet --threads 0 --num_gpus 1
      python lib/test/utils/transform_trackingnet.py --tracker_name oiftrack vitb_256_mae_ce_all_dataset
      

      Then upload $PROJECT_ROOT$/output/test/tracking_results/oiftrack/vitb_256_mae_ce_all_dataset/trackingnet_submit.zip to the online evaluation server.

  • LaSOT

    python tracking/test.py oiftrack vitb_256_mae_ce_all_dataset --dataset lasot --threads 0 --num_gpus 1
    

    Then evaluate the raw results using the official MATLAB toolkit.

    • UAV123
      python tracking/test.py oiftrack vitb_256_mae_ce_all_dataset --dataset uav --threads 0 --num_gpus 1
      python tracking/analysis_results.py