/AutoAugment_Detection

Unofficial Pytorch implementation of the paper 'Learning Data Augmentation Strategies for Object Detection'

Primary LanguageJupyter Notebook

AutoAugment for Detection Implementation with Pytorch

  • Unofficial implementation of the paper Learning Data Augmentation Strategies for Object Detection

0. Develop Environment

Docker Image
- pytorch/pytorch:1.8.1-cuda11.1-cudnn8-devel
  • Using Single GPU

1. Implementation Details

  • augmentation.py : augmentation class with probability included
  • dataset.py : COCO pytorch dataset
  • functional.py : augmentation functions for augmentation class
  • policy.py : augmentation policy v0, v1, v2, v3, vtest
  • Visualize - Bounding Box Geometric Augmentation.ipynb : experiments of bounding box geometric augmentation
  • Visualize - Color Augmentation.ipynb : experiments of color augmentation
  • Visualize - Geometric Augmentation.ipynb : experiments of geometric augmentation
  • Visualize - Magnitude Check.ipynb : experiments for checking Magnitude is right
  • Visualize - Other Augmentation.ipynb : experiments of left augmentation
  • Visualize - Policy.ipynb : experiments of policy
  • Details
    • range are different so just followed the official code not the paper
    • some of the range are fixed cause of mismatch with magnitude
      • range 0.1 ~ 1.9 for color operation (Color, Contrast, Brightness, Sharpness)
      • but 1 is the default (original image)
      • so in this repo, I code like below
        • instead using 0.1 ~ 1.9, use 0 ~ 0.9 with random change (0.5 probability)
        • e.g.) 0.9 was chosen randomly minus the value (0.9 or -0.9) and add with 1 (1.9 or 0.1)
    • do not use numpy nor opencv for speed and preventing version crashes
    • similar design pattern following torchvision transforms code
    • some of the codes can be improved but not considered in this repo (e.g. TranslateX_Only_BBoxes - translate considering bbox size not fixed pixel)

2. Results

2.1. Color Augmentation

Color Augmentation Color Augmentation

2.2. Geometric Augmentation

Geometric Augmentation Geometric Augmentation

2.3. Bounding Box Augmentation

Bounding Box Augmentation Bounding Box Augmentation

2.4. Other Augmentation

Other Augmentation Other Augmentation

2.5. Policy

Policy Policy

2.6. Magnitude

Magnitude Magnitude

3. Reference