/MoCo_v2

Unofficial Pytorch implementation of the paper 'Improved Baselines with Momentum Contrastive Learning' experiment on ImageNet-1K

Primary LanguageJupyter Notebook

MoCo v2 Implementation with Pytorch

  • Unofficial implementation of the paper Improved Baselines with Momentum Contrastive Learning

0. Develop Environment

  • Check env.txt for more details

1. Implementation Details

  • data.py : data augmentations, dataset
  • main_linear.py : only train linear classifier with frozen backbone
  • main_pretrain.py : pre-train backbone
  • models_linear.py : model for linear probing
  • models_moco.py : model for pre-train
  • utils.py : utils such as scheduler, logger
  • logs : log files
  • visualize : visualize pretrain, linear probing log (acc, lr, train loss, val loss)

2. Linear Probing Result Comparison on ImageNet

Source Score Detail
Paper 67.7 200 epochs
Paper 71.1 800 epochs
Current Repo 67.41 200 epochs, query
Current Repo 67.50 200 epochs, key
Current Repo 70.12 800 epochs, query
Current Repo 70.15 800 epochs, key

3. Reference