Jeongmin Bae1*, Seoha Kim1*, Youngsik Yun1,
Hahyun Lee2 , Gun Bang2, Youngjung Uh1†
1Yonsei University 2Electronics and Telecommunications Research Institute (ETRI)
* Equal Contributions † Corresponding Author
Official repository for "Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting".
Our approach employs per-Gaussian latent embeddings to predict deformation for each Gaussian and achieves a clearer representation of dynamic motion.
Please follow the 3DGS to install the relative packages.
git clone https://github.com/JeongminB/E-D3DGS.git
cd E-D3DGS
git submodule update --init --recursive
conda create -n ed3dgs python=3.7
conda activate ed3dgs
# If submodules fail to be downloaded, refer to the repository of 3DGS
pip install -r requirements.txt
pip install -e submodules/diff-gaussian-rasterization/
pip install -e submodules/simple-knn/
We use pytorch=1.13.1+cu116
in our environment.
Downloading Datasets:
Please download datasets from their official websites : HyperNerf, Neural 3D Video and Technicolor
- Please remove 'cam13.mp4' and corresponding pose from coffee_martini scene in the Neural 3D Video dataset.
- We split the entire flame_salmon_1_split scene into four 300-frame scenes.
Extracting point clouds from COLMAP:
# setup COLMAP
bash script/colmap_setup.sh
conda activate colmapenv
# automatically extract the frames and reorginize them
python script/pre_n3v.py --videopath <dataset>/<scene>
python script/pre_technicolor.py --videopath <dataset>/<scene>
python script/pre_hypernerf.py --videopath <dataset>/<scene>
# downsample dense point clouds
python script/downsample_point.py \
<location>/<scene>/colmap/dense/workspace/fused.ply <location>/<scene>/points3D_downsample.ply
After running COLMAP, Neural 3D Video and Technicolor datasets are orginized as follows:
├── data
│ | n3v
│ ├── cook_spinach
│ ├── colmap
│ ├── images
│ ├── cam01
│ ├── 0000.png
│ ├── 0001.png
│ ├── ...
│ ├── cam02
│ ├── 0000.png
│ ├── 0001.png
│ ├── ...
│ ├── cut_roasted_beef
| ├── ...
If you want to train with 2x downsampled images, add -r 2
to the command line.
# Train
python train.py -s $GT_PATH/$SCENE --configs arguments/$DATASET/$CONFIG.py --model_path $OUTPUT_PATH --expname $DATASET/$SCENE
The current code does not yet support video rendering for visualization (e.g., spiral path rendering).
# Render test view only
python render.py --model_path $OUTPUT_PATH --configs arguments/$DATASET/$CONFIG.py --skip_train --skip_video
# Render train view only
python render.py --model_path $OUTPUT_PATH --configs arguments/$DATASET/$CONFIG.py --skip_test --skip_video
Note: In our paper, we calculate FPS by measuring rendering time only (except for save_image, etc.).
# Evaluate
python metrics.py --model_path $SAVE_PATH/$DATASET/$CONFIG
- We provide scripts that collectively perform training, rendering, and evaluation. See the
train_<dataset_name>.sh
. - You will need to configure the dataset path according to your system.
- In the config file, make sure that the
total_num_frames
andmaxtime
are equal to the total number of training frames.
This code is based on 3DGS, 4DGaussians and STG. In particular, we used 4DGaussians as a starting point for our study. We would like to thank the authors of these papers for their hard work. 😊
@inproceedings{bae2024ed3dgs,
title={Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting},
author={Bae, Jeongmin and Kim, Seoha and Yun, Youngsik and Lee, Hahyun and Bang, Gun and Uh, Youngjung},
booktitle = {European Conference on Computer Vision (ECCV)},
year={2024}
}