Deep Recurrent Attention Reinforcement Learning [incomplete engineering]

10703 course project. See this file for details.

There are two types of attention to implement:

How to run in recurrent DQN mode without temporal attention

python dqn_atari.py --env=Assault-v0 --train --net_mode=duel --num_episodes_at_test=20 --task_name 'RNN_keras' --num_frames 10 --recurrent --replay_memory_size=500000

How to run in recurrent DQN mode with spatial attention

python dqn_atari.py --env=Seaquest-v0 --train --net_mode=dqn --num_episodes_at_test=20 --task_name 'RNN_dqn_tf_a-tSpatial_selectorON' --num_frames 10 --recurrent --replay_memory_size=500000 --a_t --selector

Important note

In Line 11 of den_atari.py:

  • from deeprl_prj.dqn import DQNAgent if you are using Keras

  • from deeprl_prj.dqn_tf import DQNAgent if you are using TF

  • from deeprl_prj.dqn_tf_spatialAt import DQNAgent if you are using TF with spatial attention