/20.440-Group_Project_JZ_APM

20.440 Group Project-Intercellular Communication in vivo

Primary LanguageJupyter Notebook

20.440 Group Project

Defining the contribution of adipose resident tissue macrophages to adipogenesis

Time: Spring 2024 Members: Jia Zhao; Adriana Payan-Medina

Overview

The repo contains the code and data to reproduce all figures and results for the group project of 20.440 Analysis of Biological Network (MIT)

Resident tissue macrophages (RTMs) are present ubiquitously in every tissue and organ, yet how they contribute to cell-cell communication is largely unknown. As intercellular communication is critical for tissue homeostasis, our goal is to use computational methods to unveil cell-cell communication between fat RTMs and adipocytes/adipocyte progenitors to decode complex cellular circuits and infer novel functions of RTMs in adipogenesis. The use of scRNA-seq analysis was also conducted to validate and investigate adipose RTM function.

Citation/Method

NicheNet: a computational algorithm to model intercellular communication

install.packages("devtools")

devtools::install_github("saeyslab/nichenetr")

Git repo of NicheNet: https://github.com/saeyslab/nichenetr/tree/master

Browaeys, R.; Saelens, W.; Saeys, Y. NicheNet: Modeling Intercellular Communication by Linking Ligands to Target Genes. Nat. Methods 2020, 17 (2), 159–162. https://doi.org/10.1038/s41592-019-0667-5.

DESeq2: find differentially expressed genes and plot

Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)

Scanpy: cluster and visualize cell types using marker genes, identify differentially expressed genes

Wolf, F., Angerer, P. & Theis, F. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19, 15 (2018). https://doi.org/10.1186/s13059-017-1382-0

scikit-learn: clustering cell types and subtypes

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Data

RNA-seq data of RTMs and other resident cells: Silva_WAT_cMAF_vs_WT.csv

Moura Silva Hernandez; Kitoko Jamil Zola; Queiroz Camila Pereira; Kroehling Lina; Matheis Fanny; Yang Katharine Lu; Reis Bernardo S.; Ren-Fielding Christine; Littman Dan R.; Bozza Marcelo Torres; Mucida Daniel; Lafaille Juan J. C-MAF–Dependent Perivascular Macrophages Regulate Diet-Induced Metabolic Syndrome. Sci. Immunol. 2021, 6 (64), eabg7506. https://doi.org/10.1126/sciimmunol.abg7506.

A Single-Cell Atlas of Human and Mouse White Adipose Tissue

Emont, M. P.; Jacobs, C.; Essene, A. L.; Pant, D.; Tenen, D.; Colleluori, G.; Di Vincenzo, A.; Jørgensen, A. M.; Dashti, H.; Stefek, A.; McGonagle, E.; Strobel, S.; Laber, S.; Agrawal, S.; Westcott, G. P.; Kar, A.; Veregge, M. L.; Gulko, A.; Srinivasan, H.; Kramer, Z.; De Filippis, E.; Merkel, E.; Ducie, J.; Boyd, C. G.; Gourash, W.; Courcoulas, A.; Lin, S. J.; Lee, B. T.; Morris, D.; Tobias, A.; Khera, A. V.; Claussnitzer, M.; Pers, T. H.; Giordano, A.; Ashenberg, O.; Regev, A.; Tsai, L. T.; Rosen, E. D. A Single-Cell Atlas of Human and Mouse White Adipose Tissue. Nature 2022, 603 (7903), 926–933. https://doi.org/10.1038/s41586-022-04518-2.

Folder structure

We have folders and subfolders in this repo:

  • data/: the raw RNAseq data of mouse white adipose tissue RTMs and other resident cells
    • scRNA_HWAT/: subfolder with human WAT scRNA-seq UMAP results, metadata, features, and barcodes. The Matrix file referenced in 'A Single-Cell Atlas of Human and Mouse White Adipose Tissue' was locally stored due to its considerable size and the uploading constraints of GitHub. However, it is openly accessible via the provided link.
  • code/: source files for producing the results and figures
  • figures/: the final figures included in the submission
  • presentation_slides/: Final presentation slides.

Installation

NicheNet Analysis

R version 4.3.3

RStudio version: 2023.12.1.402

Packages: Relevant codes are in code/NicheNet_VAMs.Rmd

install.packages("devtools")

devtools::install_github("saeyslab/nichenetr")

install.packages("tidyverse")

install.packages("DESeq2")

install.packages("EnhancedVolcano")

scRNA-seq Analysis

Python version 3.11.5

Jupyter Notebook version 7.1.3

Packages: Relevant codes are in code/scRNA_cluster_DGE.ipynb

import pandas

import sklearn.cluster

import scanpy

import matplotlib.pyplot

import numpy

import os