Replication materials for J Wang#, Y Fan#, J Palacios, Y Chai, N Jeanrenaud, N Obradovich, C Zhou*, S Zheng* (2021).
The materials in this repository allow users to reproduce the data analysis and figures appearing in the paper.
If you have questions or suggestions, please contact Jianghao Wang at wangjh@mit.edu | wangjh@lreis.ac.cn
- R 4.0+
- Python 3.7-3.9
- Stata 14.0+
- input: all the necessary input data
- figures: the main text final figures
- script:
- 01_sentiment/ : sentiment imputation, see the repository: https://github.com/MIT-SUL-Team/global-sentiment
- data: the traning and labeled_data for the global sentiment imputation
- dict/sentiment_dicts: the emoji, hedonometer, and LIWC dictionaries
- models: the multilingual data for the sentiment
- notebooks:
sentiment clf evaluator.ipynb
- output
- report
- src: main model and sentiment imputation folders
main_geography_imputer.py
main_sentiment_aggregator.py
main_sentiment_imputer.py
setup_emb_clf.py
setup_liwc.py
- utils: functions used for the sentiment imputation
aggregation_utils.py
data_read_in.py
dict_sentiment_imputer.py
emb_clf_setup_utils.py
emb_sentiment_imputer.py
- 02_visual/: exploration analysis, see details in
figures
. - 03_sentiment_recovery/: This section reproduce the result of
Expressed sentiment alterations during COVID-19 pandemic
: the first measure--recovery half-life. - 04_sentiment_shock_and_lockdown_effect/: This section reproduce the result of
Expressed sentiment alterations during COVID-19 pandemic
: the second measure--sentiment drop and the results ofImpacts of lockdowns on expressed sentiment
- 01_sentiment/ : sentiment imputation, see the repository: https://github.com/MIT-SUL-Team/global-sentiment