These are the datasets and implementation for the paper:
Jiayu Li, Hongyu Lu, Chenyang Wang, Weizhi Ma, Min Zhang, Xiangyu Zhao, Wei Qi, Yiqun Liu, and Shaoping Ma, 2021. A Difficulty-Aware Framework forChurn Prediction and Intervention in Games. In KDD'21.
Please cite the paper if you use these datasets or codes.
@inproceedings{li2021difficulty
title={A Difficulty-Aware Framework forChurn Prediction and Intervention in Games},
author={Li, Jiayu and Lu, Hongyu and Wang, Chenyang and Ma, Weizhi and Zhang, Min and Zhao, Xiangyu and Qi, Wei and Liu, Yiqun and Ma, Shaoping},
booktitle={Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={},
year={2021},
organization={ACM}
}
If you have any problem about this work or dataset, please contact with Min Zhang at z-m@tsinghua.edu.cn.
We collected anonymous data from a real-world tile-matching puzzle mobile game. The open dataset contains logs of 4089 new users in two-month interactions.
Due to the storage space limitation, our data set is uploaded to https://cloud.tsinghua.edu.cn/d/3a13277acd6b4daab1f3/. It contains two files of user activities:
interactions.csv:
Each line represent a Play behavior of users.
Formatting:
user_id,session_id,level_id,win,duration,energy,retry_time,timestamp,item_all,session_depth,time
The session_id
is user-specific. session_depth
indicates how many times the user played in the same session till this records.
payment.csv:
Each line represent one time of purchase of users.
Formatting:
gold_amount,coin_amount,level,timestamp,user_id
gold
and coin
are two different types of currency in the game.
To provide the commercial privacy of the game company, we scale up two columns with two integers, respectively .
level_meta.csv:
This file is generated from the level_id
and retry_time
of interactions.csv
.
It represent the global retry time (i.e. challenge c) of each level.
If you want to use this framework for the dataset, please download the files and put them in `./data/`.
For reproducibility, we also provide the dataset split for five-fold cross validation in offline experiments of our paper in `./data/dataset_split/`. And the labels with observation window T=30 and detection window T=7 is in `./data/label.csv`.
To run the codes, first run: pip install -r requirements.txt
The Personalized Difficulty Flow is used for generating Personalized Perceived Difficutly (PPD). Run Difficulty_fitting.py
in src/Difficulty_Flow
to generate the flow.
python Difficulty_fitting.py --save_path ../../data/Difficulty_Flow
Dynamic Difficulty Influence is generated with the survival analysis model, D-Cox-Time.
Feature extraction is processed with Cox-Feature-Extraction.py
in src/Data_preparation
.
python Cox-Feature-Extraction.py --data_path ../../data/ --params_file ../../data/Difficulty_Flow/0_difficulty_flow.json --save_path ../../data/D-Cox-Time --save_day_features_path ../../data/
The implementation of D-Cox-Time is in src/D-Cox-Time
.
# Example
python Cox_train.py --weight_decay 0.8 --lr 0.01 --distance_level 10 --max_session_length 30 --earlystop_patience 10 --optimizer AdamWR --cross_validation 5 --one_hot 1 --data_path ../../data/D-Cox-Time/ --fold_define ../../data/dataset_split --device cuda --model_name D-Cox-Time
Churn prediction is conducted with various models.
Feature extraction is processed with Churn-Feature-Extraction.py
in src/Data_preparation
.
python Churn-Feature-Extraction.py --data_path "../../data/" --cox_feature_path "../D-Cox-Time/Checkpoints/fold-XXX/D-Cox-Time" --save_path "../../data/Churn-Features/"
In the paper, we report the predictoin results with the best AUC. The hyper-parameters for each model and feature group in our paper are as follows:
# Example
## LR
python main.py --model_name LR --datapath ../../data --feature_file Churn-Features/feature_data.csv --user_path dataset_split
python main.py --model_name LR --datapath ../../data --feature_file Churn-Features/feature_data_diff.csv --user_path dataset_split
python main.py --model_name LR --datapath ../../data --feature_file Churn-Features/feature_data_all_fold-XXX.csv --user_path dataset_split
## SVM
python main.py --model_name SVM --C 10.0 --kernel rbf --gamma -1.0 --datapath ../../data --feature_file Churn-Features/feature_data.csv --user_path dataset_split
python main.py --model_name SVM --C 10.0 --kernel rbf --gamma -1.0 --datapath ../../data --feature_file Churn-Features/feature_data_diff.csv --user_path dataset_split
python main.py --model_name SVM --C 10.0 --kernel rbf --gamma -1.0 --datapath ../../data --feature_file Churn-Features/feature_data_all_fold-XXX.csv --user_path dataset_split
## MLP
python main.py --model_name MLP --embed_size 256 --hidden_size 1 --epoches 800 --lr 0.005 --datapath ../../data --feature_file Churn-Features/feature_data.csv --user_path dataset_split
python main.py --model_name MLP --embed_size 64 --hidden_size 1 --epoches 500 --lr 0.001 --datapath ../../data --feature_file Churn-Features/feature_data_diff.csv --user_path dataset_split
python main.py --model_name MLP --embed_size 64 --hidden_size 1 --epoches 500 --lr 0.001 --datapath ../../data --feature_file Churn-Features/feature_data_all_fold-XXX.csv --user_path dataset_split
## DeepFM
python main.py --model_name DeepFM --dnn_hidden_units 256 256 --l2_reg_linear 1e-05 --l2_reg_dnn 1e-4 --dnn_dropout 0.5 --dnn_use_bn 0 --lr 0.001 --datapath ../../data --feature_file Churn-Features/feature_data.csv --user_path dataset_split
python main.py --model_name DeepFM --dnn_hidden_units 256 256 --l2_reg_linear 1e-4 --l2_reg_dnn 1e-4 --dnn_dropout 0.9 --dnn_use_bn 0 --lr 0.001 --datapath ../../data --feature_file Churn-Features/feature_data_diff.csv --user_path dataset_split
python main.py --model_name DeepFM --dnn_hidden_units 128 256 --l2_reg_linear 1e-4 --l2_reg_dnn 1e-05 --dnn_dropout 0.5 --dnn_use_bn 0 --lr 0.001 --datapath ../../data --feature_file Churn-Features/feature_data_all_fold-XXX.csv --user_path dataset_split
## RF
python main.py --model_name RF --estimators 500 --subsample 1 --max_depth 12 --min_samples_split 2 --min_samples_leaf 1 --datapath ../../data --feature_file Churn-Features/feature_data.csv --user_path dataset_split
python main.py --model_name RF --estimators 500 --subsample 1 --max_depth 12 --min_samples_split 2 --min_samples_leaf 1 --datapath ../../data --feature_file Churn-Features/feature_data_diff.csv --user_path dataset_split
python main.py --model_name RF --estimators 700 --subsample 1 --max_depth 14 --min_samples_split 2 --min_samples_leaf 1 --datapath ../../data --feature_file Churn-Features/feature_data_all_fold-XXX.csv --user_path dataset_split
## GBDT
python main.py --model_name GBDT --estimators 500 --subsample 0.9 --max_depth 6 --min_samples_split 2 --min_samples_leaf 1 --lr 0.3 --datapath ../../data --feature_file Churn-Features/feature_data.csv --user_path dataset_split
python main.py --model_name GBDT --estimators 600 --subsample 1.0 --max_depth 6 --min_samples_split 2 --min_samples_leaf 1 --lr 0.3 --datapath ../../data --feature_file Churn-Features/feature_data_diff.csv --user_path dataset_split
python main.py --model_name GBDT --estimators 600 --subsample 0.9 --max_depth 6 --min_samples_split 2 --min_samples_leaf 1 --lr 0.25 --datapath ../../data --feature_file Churn-Features/feature_data_all_fold-XXX.csv --user_path dataset_split
Run `src/churn_prediction.sh` to generate all data and get the results.