WSDM Cup 2022

Keywords

  • Link Prediction
  • Temporal Graph Neural Networks
  • Continuous-Time
  • Variational Time Embedding

Overview

.

Idea

  • Continuous Time Embedding
    • Temporal metapath2vec
    • variational time embedding
  • Continuous Time Heterogeneous Link Prediction with Relational Graph Attention Networks

Reference

WSDM 2021 CUP

PyTorch Geometric

Link Prediction

Heterogeneous / MetaPath2Vec

Setup

$ sudo apt-get install python3-venv
$ cd ./[repo]
$ python3 -m venv env
$ source ./env/bin/activate

# (env)
pip install --upgrade pip

# -----------------------------------~~~~
#     PyTorch / PyTorch Geometric
# -----------------------------------
nvidia-smi
nvcc --version
# TORCH 1.10.0 + CUDA 113

# https://pytorch.org/get-started/locally/
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

# https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.10.0+cu113.html

# -----------------------------------
#     Machine Learning
# -----------------------------------
pip install matplotlib
pip install seaborn
pip install numpy  # for torch
pip install scipy  # for torch-sparse
pip install sklearn
pip install jupyterlab
pip install networkx
pip install pyvis

# pip install dgl-cu111 -f https://data.dgl.ai/wheels/repo.html

Usage

# (env)
python ./scripts/prepare_dataset.py

References

Note

  • The test set will not involve any nodes that do not already appear in the given edge set. -> Transductive