/Entity-Relation-Extraction

Entity and Relation Extraction Based on TensorFlow. 基于TensorFlow的管道式实体及关系抽取,2019语言与智能技术竞赛信息抽取任务解决方案(比赛结束后完善代码)。Schema based Knowledge Extraction, SKE 2019

Primary LanguagePython

Entity-Relation-Extraction

Entity and Relation Extraction Based on TensorFlow. 基于 TensorFlow 的实体及关系抽取,2019语言与智能技术竞赛信息抽取任务解决方案。

more info: 2019语言与智能技术竞赛 , Baidu Official Baseline Model(Python2.7) and Baseline Model(Python3)

Abstract

该代码以管道式的方式处理实体及关系抽取任务,首先使用一个多标签分类模型判断句子的关系种类,然后把句子和可能的关系种类输入序列标注模型中,序列标注模型标注出句子中的实体,最终结合预测的关系和实体输出实体-关系列表:(实体1,关系,实体2)。

The code deals with entity and relationship extraction tasks in a pipeline way. First, a multi-label classification model is used to judge the relationship types of sentences. Then, the sentence and possible relationship types are input into the sequence labeling model. The sequence labeling model labels the entities in sentences, and finally combines the predicted relationship with the entity output entity-relationship list: (entity 1, relationship, entity 2).

相关模型:Schema-based-Knowledge-Extraction 该模型联合了关系预测和实体输出,是一个联合模型,同时输出关系和实体。

竞赛任务

给定schema约束集合及句子sent,其中schema定义了关系P以及其对应的主体S和客体O的类别,例如(S_TYPE:人物,P:妻子,O_TYPE:人物)、(S_TYPE:公司,P:创始人,O_TYPE:人物)等。 任务要求参评系统自动地对句子进行分析,输出句子中所有满足schema约束的SPO三元组知识Triples=[(S1, P1, O1), (S2, P2, O2)…]。 输入/输出: (1) 输入:schema约束集合及句子sent (2) 输出:句子sent中包含的符合给定schema约束的三元组知识Triples

例子 输入句子: "text": "《古世》是连载于云中书城的网络小说,作者是未弱"

输出三元组: "spo_list": [{"predicate": "作者", "object_type": "人物", "subject_type": "图书作品", "object": "未弱", "subject": "古世"}, {"predicate": "连载网站", "object_type": "网站", "subject_type": "网络小说", "object": "云中书城", "subject": "古世"}]}

数据简介

本次竞赛使用的SKE数据集是业界规模最大的基于schema的中文信息抽取数据集,其包含超过43万三元组数据、21万中文句子及50个已定义好的schema,表1中展示了SKE数据集中包含的50个schema及对应的例子。数据集中的句子来自百度百科和百度信息流文本。数据集划分为17万训练集,2万验证集和2万测试集。其中训练集和验证集用于训练,可供自由下载,测试集分为两个,测试集1供参赛者在平台上自主验证,测试集2在比赛结束前一周发布,不能在平台上自主验证,并将作为最终的评测排名。

Getting Started

Environment Requirements

  • python 3.6+
  • Tensorflow 1.12.0+

Step 1: Environmental preparation

  • Install Tensorflow
  • Dowload bert-base, chinese, unzip file and put it in pretrained_model floader.

Step 2: Download the training data, dev data and schema files

Please download the training data, development data and schema files from the competition website, then unzip files and put them in ./raw_data/ folder.

cd data
unzip train_data.json.zip 
unzip dev_data.json.zip
cd -

百度网盘-2019语言与智能技术竞赛_信息抽取raw_data

关系分类模型和实体序列标注模型可以同时训练,但是只能依次预测!

训练阶段

准备关系分类数据

python bin/predicate_classifiction/predicate_data_manager.py

关系分类模型训练

python run_predicate_classification.py \
--task_name=SKE_2019 \
--do_train=true \
--do_eval=false \
--data_dir=bin/predicate_classifiction/classification_data \
--vocab_file=pretrained_model/chinese_L-12_H-768_A-12/vocab.txt \
--bert_config_file=pretrained_model/chinese_L-12_H-768_A-12/bert_config.json \
--init_checkpoint=pretrained_model/chinese_L-12_H-768_A-12/bert_model.ckpt \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=6.0 \
--output_dir=./output/predicate_classification_model/epochs6/

准备序列标注数据

python bin/subject_object_labeling/sequence_labeling_data_manager.py

序列标注模型训练

python run_sequnce_labeling.py \
--task_name=SKE_2019 \
--do_train=true \
--do_eval=false \
--data_dir=bin/subject_object_labeling/sequence_labeling_data \
--vocab_file=pretrained_model/chinese_L-12_H-768_A-12/vocab.txt \
--bert_config_file=pretrained_model/chinese_L-12_H-768_A-12/bert_config.json \
--init_checkpoint=pretrained_model/chinese_L-12_H-768_A-12/bert_model.ckpt \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=9.0 \
--output_dir=./output/sequnce_labeling_model/epochs9/

预测阶段

关系分类模型预测

python run_predicate_classification.py \
  --task_name=SKE_2019 \
  --do_predict=true \
  --data_dir=bin/predicate_classifiction/classification_data \
  --vocab_file=pretrained_model/chinese_L-12_H-768_A-12/vocab.txt \
  --bert_config_file=pretrained_model/chinese_L-12_H-768_A-12/bert_config.json \
  --init_checkpoint=output/predicate_classification_model/epochs6/model.ckpt-27000 \
  --max_seq_length=128 \
  --output_dir=./output/predicate_infer_out/epochs6/ckpt27000

把关系分类模型预测结果转换成序列标注模型的预测输入

python bin/prepare_data_for_labeling_infer.py

序列标注模型预测

python run_sequnce_labeling.py \
  --task_name=SKE_2019 \
  --do_predict=true \
  --data_dir=bin/subject_object_labeling/sequence_labeling_data \
  --vocab_file=pretrained_model/chinese_L-12_H-768_A-12/vocab.txt \
  --bert_config_file=pretrained_model/chinese_L-12_H-768_A-12/bert_config.json \
  --init_checkpoint=output/sequnce_labeling_model/epochs9/model.ckpt-22000 \
  --max_seq_length=128 \
  --output_dir=./output/sequnce_infer_out/epochs9/ckpt22000

生成实体-关系结果

python produce_submit_json_file.py

评估阶段

注意!官方提供的测试数据集 test1_data_postag.json 没有提供标签,所以只能提交给官方评测。 如果要自行评测模型效果:

predicate_data_manager.py set: Competition_Mode = False

然后运行:bin/evaluation 中的评测文件

提交给官方评测的部分实验结果

分类模型 序列标注模型 准确率 召回率 F1值
epochs6ckpt1000 epochs9ckpt4000 0.8549 0.7028 0.7714
epochs6ckpt13000 epochs9ckpt10000 0.8694 0.7188 0.7869
epochs6ckpt20000 epochs9ckpt17000 0.8651 0.738 0.7965
epochs6ckpt23000 epochs9ckpt20000 0.8714 0.7289 0.7938