- poker game engine
- engine from https://github.com/ishikota/PyPokerEngine
- documents
3players 4players
demo video final report
chart.py
- the player in the game whose position is 0 will use the class to store the chart and show it
- store test result from AutoAI.py
- data_set.py (only NC model will call the function to store game_data) -NC_3_players_data_set.csv store data from NC playing 3-player poker game -NC_4_players_data_set.csv store data from NC playing 4-player poker game
- background image for interface
- 113th trained AI model (3)(4)
- 113th trained AI model (3+4)
- 112th trained AI model
- 111th trained AI model
- program to start the game with interface used for demo
-
pip install modules in the requirement.txt
pip install -r requirement.txt
(requirement.txt may lack some packages. Install all the other packages from the error message) -
change the path if AutoAI file is NOT installed in F:\
def predict(self): if self.get_players()==3: with open('F:\\AutoAI\\NCmodel\\model-3p\\model3.config', 'r') as json_file: #path json_string = json_file.read() model = Sequential() model = model_from_json(json_string) model.load_weights('F:\\AutoAI\\NCmodel\\model-3p\\model3.weight', by_name=False) #path elif self.get_players()==4: with open('F:\\AutoAI\\NCmodel\\model-4p\\model4.config', 'r') as json_file: #path json_string = json_file.read() model = Sequential() model = model_from_json(json_string) model.load_weights('F:\\AutoAI\\NCmodel\\model-4p\\model4.weight', by_name=False) #path
def predict(self): with open('F:\\AutoAI\\NCmodel\\model-3+4p\\model3+4.config', 'r') as json_file: #path json_string = json_file.read() model = Sequential() model = model_from_json(json_string) model.load_weights('F:\\AutoAI\\NCmodel\\model-3+4p\\model3+4.weight', by_name=False) #path
def predict(self): with open('F:\\AutoAI\\OCmodel\\model.config', 'r') as text_file: #path json_string = text_file.read() model = Sequential() model = model_from_json(json_string) model.load_weights('F:\\AutoAI\\OCmodel\\model.weight', by_name=False) #path
def predict(self): model = joblib.load(r"F:\AutoAI\RFmodel\my_random_forest.joblib")#path
-
complile and run AutoAI.py
-
set the game initial value (it should be bigger than small bet)
-
press Show Player Algorithm button
-
select the Algorithm U want
-
press Run Poker Game button
(It will take some time to run the game, U can see the process in the vs code terminal.) (Most bugs can be fixed by restarting Auto.py)
Note:
- DO NOT CHOOSE THE SAME AIs IN ONE GAME.
- Player number should be 3~4 players.