/MAB_Algorithms

Implementation of Multi-Armed Bandit (MAB) algorithms UCB and Epsilon-Greedy. MAB is a class of problems in reinforcement learning where an agent learns to choose actions from a set of arms, each associated with an unknown reward distribution. UCB and Epsilon-Greedy are popular algorithms for solving MAB problems.

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

MAB_Algorithms

Implementation of Multi-Armed Bandit (MAB) algorithms UCB and Epsilon-Greedy. MAB is a class of problems in reinforcement learning where an agent learns to choose actions from a set of arms, each associated with an unknown reward distribution. UCB and Epsilon-Greedy are popular algorithms for solving MAB problems.