/chinese-text-multi-classification-clstm

A Multi-classification of chinese text with cnn-rnn model.

Primary LanguagePython

Multi-class Text Classification

Implement four neural networks in Tensorflow for multi-class text classification problem.

Models

Data Format

Training data should be stored in csv file. The first line of the file should be ["label", "content"] or ["content", "label"].

Requirements

  • Python 3.5 or 3.6
  • Tensorflow >= 1.4.0
  • Numpy

Train

Run train.py to train the models. Parameters:

python train.py --help
optional arguments:
  -h, --help            show this help message and exit
  --clf CLF             Type of classifiers. Default: cnn. You have four
                        choices: [cnn, lstm, blstm, clstm]
  --data_file DATA_FILE
                        Data file path
  --stop_word_file STOP_WORD_FILE
                        Stop word file path
  --language LANGUAGE   Language of the data file. You have two choices: [ch,
                        en]
  --min_frequency MIN_FREQUENCY
                        Minimal word frequency
  --num_classes NUM_CLASSES
                        Number of classes
  --max_length MAX_LENGTH
                        Max document length
  --vocab_size VOCAB_SIZE
                        Vocabulary size
  --test_size TEST_SIZE
                        Cross validation test size
  --embedding_size EMBEDDING_SIZE
                        Word embedding size. For CNN, C-LSTM.
  --filter_sizes FILTER_SIZES
                        CNN filter sizes. For CNN, C-LSTM.
  --num_filters NUM_FILTERS
                        Number of filters per filter size. For CNN, C-LSTM.
  --hidden_size HIDDEN_SIZE
                        Number of hidden units in the LSTM cell. For LSTM, Bi-
                        LSTM
  --num_layers NUM_LAYERS
                        Number of the LSTM cells. For LSTM, Bi-LSTM, C-LSTM
  --keep_prob KEEP_PROB
                        Dropout keep probability
  --learning_rate LEARNING_RATE
                        Learning rate
  --l2_reg_lambda L2_REG_LAMBDA
                        L2 regularization lambda
  --batch_size BATCH_SIZE
                        Batch size
  --num_epochs NUM_EPOCHS
                        Number of epochs
  --evaluate_every_steps EVALUATE_EVERY_STEPS
                        Evaluate the model on validation set after this many
                        steps
  --save_every_steps SAVE_EVERY_STEPS
                        Save the model after this many steps
  --num_checkpoint NUM_CHECKPOINT
                        Number of models to store

You could run train.py to start training:

 python3 train.py --data_file=your_dataFile_path --clf=clstm --language=ch --num_classes=118 --vocab_size=20000

You could run train_test.py to start training and test:

 python3 train_test.py --data_file='/home/xw/codeRepository/NLPspace/QA/jira_issue_rcnn_multi_clf/data/SearchRequest_All.xml' --clf=clstm --language=ch --num_classes=118 --vocab_size=20000 --num_epochs=30

Pridect

python3 pridect.py --file_path=./runs/1516344401/ --model_file=clf-65000

Description

  • 数据只选择了summary和description部分做为输入初始样本,经过预处理后,去除掉英文、数字和不必要的符号串,最后样本中只剩下中文内容,作为最终的分词文本集
  • 最终使用CLSTM模型对118个标签进行分类得到精度为83.94%.
    PS: 上次有个小bug,所以导致精度达到86%,经过处理后,上面是目前最终结果;比原来RCNN模型高了4%左右

Second update

  • 这次更新把原来的data.py删除,数据处理都在data_helper.py文件中
  • 增加了train_test.py,将数据集分成训练集、开发集(验证集)、测试集。而原来train.py只有训练集和验证集
  • 增加了pridect.py文件,对未登录词进行预测。 PS:我拿了其他人最近刚提交的Issue,测试了十几个,效果很好

Third update

  • 本次更新data_help.py文件,主要内容如下:

    • 为了解决类别不均衡问题(最多类别十万多,而最少类别只有个位数,具体见分支2 dataOut文件夹下的labelCouter.txt文件),有几种方法,本项目选择随机过采样方法使得类别达到相对均衡(还有其他的一些方法转类别不均衡解决办法),这可能不是最好的解决办法,但它是work。

    • 最后精度达到89.50%,运行方法同上。较之前提高了6%。

TODOs

  • The F1-score or Precision or Recall metrics would be computed with the model as the unbalanced category in the text dataset.
  • The parameters would be tuned by the next time.

Reference