Benign vs Malignant classifier using convolutional neural networks
Check out the corresponding medium blog post https://towardsdatascience.com/convolutional-neural-network-for-breast-cancer-classification-52f1213dcc9.
The dataset can be downloaded from here. This is a binary classification problem. I split the data as shown-
dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//...
- Jupyter Notebook
- Numpy
- Pandas
- Scikit-image
- Matplotlib
- Scikit-learn
- Keras
pip install numpy pandas scikit-image matplotlib scikit-learn keras
jupyter notebook
The model is able to reach a validation accuracy of 98.3%, precision 0.65, recall 0.95, f1 score of 0.77 and ROC-AUC as 0.692.
@misc{Abhinav:2019,
Author = {Abhinav Sagar},
Title = {Breast-cancer-classification},
Year = {2019},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/abhinavsagar/Breast-cancer-classification}}
}