/AAPD

Project for research article classification

Primary LanguageJupyter NotebookApache License 2.0Apache-2.0

AAPD

Time-boxed project on research article classification

Research article classification

Report under report/main.pdf

All code under src

Task

(extreme) multi-label / hierarchical / multi-level text classification

Papers

Data

Arxiv dataset: (HF_datasets)[https://huggingface.co/datasets/arxiv_dataset/blob/main/arxiv_dataset.py]

EDA

EDA.ipynb: hyperannotated with commentary

Experiments

Baseline: BERT

  • Better encoder: DeBERTa
  • Better pre-training: SciBERT
  • Better loss: Two-way Multi-Label Loss

Alternate approaches:

  • Few-shot classification (Setfit)
  • Generative models for instruction tuning (Llama2)

Metrics

  • accuracy
  • precision
  • recall
  • F1
  • Hamming loss

TODO:

Results/Report

See wandb report @ https://wandb.ai/jordy-vlan/scientific-text-classification

Reproduction

To reproduce the results of the report, one can run the commands of the models in wandb. For example, to reproduce the results of the ((current) best reported model)[https://wandb.ai/jordy-vlan/scientific-text-classification/runs/zk81z3qc/overview?workspace=user-jordy-vlan], one can run the following command:

python src/baseline_multilabel.py --experiment_name SciBERT_twowayloss_25K_bs64 --model_name_or_path allenai/scibert_scivocab_uncased --output_dir ../results --seed 42 --evaluation_strategy steps --per_device_train_batch_size 64 --gradient_accumulation_steps 1 --learning_rate 2e-5 --num_train_epochs 1 --max_steps 25000 --logging_strategy steps --logging_steps 0.05 --save_steps 0.2 --eval_steps 0.2 --criterion TwoWayLoss --Tp 4.0 --Tn 1.0

Installation

The scripts require python >= 3.8 to run and a conda environment with the following packages:

    conda env create -f environment.yml  # creates the environment
    conda activate aapd  # activates the environment

Organization

Time spent

Total working time spent: 17h

31/01 14-16h: initial task setup - EDA

02/02 20-22h: EDA + preprocessing [SYNC]

04/02

08-11h: baseline_multilabel setup - implementation testing

17-19u: implementation tested - status: working on baseline_multilabel [SYNC]

20-21u: implementation of zero/few-shot classification and generative models for instruction tuning (to be tested) [SYNC]

05/02

13-15h: patch for stringlabels in HF datasets [SYNC]

22-23h: testing zero/few-shot classification and generative models for instruction tuning  [SYNC] 

06/02

12-14h: implemented TwoWayLoss with custom HFTrainer and tested - will start final run with SciBERT (current best settings: 2e-5 lr, 64BS, 25K steps, requires >46GB GPU VRAM) [SYNC]

14-15h: boilerplated report

19-20h: finalizing report - to fill in results

07/02

14-16h: fixed LLM evaluation - SetFit training slowly, issues in evaluation with SetFitTrainer