-
Install Docker
-
To support GPUs on Linux, install nvidia-docker
-
Build the docker image via the dockerfile present in
./tensorflow/docker/
docker build directory_path_to_the_dockerfile -t give_a_name_to_your_image
-
Launch your container (
src
: path to the tensorflow folder to be mounted)
nvidia-docker run --runtime=nvidia -it --mount src="$(pwd)/user/tensorflow",target=/mnt,type=bind -p 8888:8888 -p 6006:6006 -e HOST_PERMS="$(id -u):$(id -g)" --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 img_id bash
-
Example : single layer convolutionnal : name, patch(6x6) x input channels(1) ⇒ output channels(6), weight matrix , bias vector bias, output matrix
-
input_tensor, 1-deep, X [batch, 224, 224, 3]
-
layer_conv_1, 6x6x3⇒16 stride 1, W_C1 [6, 6, 3, 16], B_C1 [16], Y_C1 [batch, 28, 28, 16]
-
layer_conv_2, 5x5x16⇒32 stride 2, W_C2 [5, 5, 16, 32], B_C2 [16], Y_C2 [batch, 28, 28, 16]
-
layer_conv_3, 5x5x32⇒64 stride 2, W_C3 [4, 4, 32, 64], B_C3 [32], Y_C3 [batch, 14, 14, 32]
-
layer_conv_4, 4x4x64⇒64 stride 2, W_C4 [4, 4, 64, 64], B_C4 [64], Y_C4 [batch, 7, 7, 64]
-
layer_conv_5, 4x4x64⇒64 stride 2, W_C5 [4, 4, 64, 64], B_C5 [64], Y_C5 [batch, 7, 7, 64]
-
layer_conv_6, 4x4x64⇒64 stride 2, W_C6 [4, 4, 64, 64], B_C6 [64], Y_C6 [batch, 7, 7, 64]
-
layer_reshaped, reshaped to YY (flattened) [batch, 7*7*64]
-
fully connected layer (relu+dropout), W_D1 [7*7*64, 200], B4 [200], Y_D1 [batch, 200]
-
fully connected layer (softmax), W_D2 [200, 8], B_D2 [8], Y_D2 [batch, 8]
-
Allows you to increase the size of the image dataset contained in the furniture folder.
Apply different modifications to the images (rotate, zoom, flip, skew).
The newly generated images are put in an output folder in their respective class.
python3 augmentation_data.py
Creates the TFRecord Files, three files containing the three sets of images : * Train * Validation * Test
python3 create_TFRecords.py
Freeze the model, remember to put the checkpoint number in --input_checkpoint' instead of `NUMBER
.
python3 -m tensorflow.python.tools.freeze_graph --input_graph=graph.pbtxt --input_checkpoint=model.ckpt-NUMBER --input_binary=False --output_graph=graph.pb --output_node_names=input_tensor,action
docker exec -it votre_container_id bash
ikea/tensorflow/model/
folder and consult from your browser localhost:6006
tensorboard --logdir .