As part of the course F21MP_2020-2021, Masters Project and Dissertation carried out at Heriot-Watt University for the MSc Data Science, the Research-ML-BTC project was carried out. This project is open-source and versioned on Git.
It is avaible on :
The documentation is generated with the Sphinx framework with the Read The Doc template.
It is accessible via the file: /documentation/build/html/index.html
- Git clones the repository:
git clone git@gitlab-student.macs.hw.ac.uk:jmmc2000/f21mp_2020-2021.git
orgit clone git@github.com:JosephCHS/Research-ML-BTC.git
- Enter the directory
- Have Python 3 installed (default on recent OS like Ubuntu or Debian)
- Install pip:
sudo apt install -y python3-pip
- Install virtual-env:
python3 -m pip install --user virtualenv
- Activate the virtual environment:
source .venv/bin/activate
- Install the prerequisites in the virtual environment:
pip install -r source/requirements.txt
You can import modules from the project and use the classes and their methods.
In addition, documentation is available: /documentation/build/html/index.html
Examples of usage are written at the bottom of the files and commented to guide the user.
These examples are also available bellow.
dataset = Dataset()
dataset.create_dataset()
convert = Arff()
convert.generate_arff()
convert.generate_arff_with_future()
dataset = Dataset()
dataframe_btc = dataset.get_btc_data()
candlesticks = Candlesticks()
candlesticks.display_candlesticks_chart(dataframe_btc)
ConfusionMatrix(True)
# Instantiate class
machine_learning = MachineLearning()
machine_learning.display_information()
# Model sklearn
models_sklearn = [
machine_learning.model_logistic_regression(),
machine_learning.model_svm(),
]
# Display models results sklearn
for model in models_sklearn:
machine_learning.display_result(model)
machine_learning.display_report_sklearn()
# Model Keras
machine_learning.model_lstm()
machine_learning.model_cnn()
# Model Pytorch
machine_learning.model_bnn()