/2022-highload-dht-1

Highload course project

Primary LanguageHTMLApache License 2.0Apache-2.0

2022-highload-dht

Курсовой проект 2022 года курса "Проектирование высоконагруженных систем" VK Образования.

Этап 1. HTTP + storage (deadline 2022-09-28 23:59:59 MSK)

Fork

Форкните проект, склонируйте и добавьте upstream:

$ git clone git@github.com:<username>/2022-highload-dht.git
Cloning into '2022-highload-dht'...
...
$ git remote add upstream git@github.com:polis-vk/2022-highload-dht.git
$ git fetch upstream
From github.com:polis-vk/2022-highload-dht
 * [new branch]      master     -> upstream/master

Make

Так можно запустить тесты:

$ ./gradlew test

А вот так -- сервер:

$ ./gradlew run

Develop

Откройте в IDE -- IntelliJ IDEA Community Edition нам будет достаточно.

ВНИМАНИЕ! При запуске тестов или сервера в IDE необходимо передавать Java опцию -Xmx128m.

В своём Java package ok.dht.test.<username> реализуйте интерфейсы Service и ServiceFactory.Factory и поддержите следующий HTTP REST API протокол:

  • HTTP GET /v0/entity?id=<ID> -- получить данные по ключу <ID>. Возвращает 200 OK и данные или 404 Not Found.
  • HTTP PUT /v0/entity?id=<ID> -- создать/перезаписать (upsert) данные по ключу <ID>. Возвращает 201 Created.
  • HTTP DELETE /v0/entity?id=<ID> -- удалить данные по ключу <ID>. Возвращает 202 Accepted.

Используем свою реализацию DAO из весеннего курса 2022-nosql-lsm, либо берём референсную реализацию, если курс БД не был завершён.

Проведите нагрузочное тестирование с помощью wrk2 в одно соединение:

  • PUT запросами на стабильной нагрузке (wrk2 должен обеспечивать заданный с помощью -R rate запросов)
  • GET запросами на стабильной нагрузке по наполненной БД

Почему не curl/F5, можно узнать здесь и здесь.

Приложите полученный консольный вывод wrk2 для обоих видов нагрузки.

Отпрофилируйте приложение (CPU и alloc) под PUT и GET нагрузкой с помощью async-profiler. Приложите SVG-файлы FlameGraph cpu/alloc для PUT/GET нагрузки.

Объясните результаты нагрузочного тестирования и профилирования и приложите текстовый отчёт (в Markdown).

Продолжайте запускать тесты и исправлять ошибки, не забывая подтягивать новые тесты и фиксы из upstream. Если заметите ошибку в upstream, заводите баг и присылайте pull request ;)

Report

Когда всё будет готово, присылайте pull request со своей реализацией и оптимизациями на review. Не забывайте отвечать на комментарии в PR (в том числе автоматизированные) и исправлять замечания!

Этап 2. Асинхронный сервер (deadline 2022-10-05 23:59:59 MSK)

Вынесите обработку запросов в отдельный ExecutorService с ограниченной очередью, чтобы разгрузить SelectorThreadы HTTP сервера.

Проведите нагрузочное тестирование с помощью wrk2 с большим количеством соединений (не меньше 64) PUT и GET запросами.

Отпрофилируйте приложение (CPU, alloc и lock) под PUT и GET нагрузкой с помощью async-profiler.

Report

Когда всё будет готово, присылайте pull request с изменениями, результатами нагрузочного тестирования и профилирования, а также анализом результатов по сравнению с предыдущей (синхронной) версией.

Этап 3. Шардирование (bonus deadline 2022-10-12 23:59:59 MSK, hard deadline 2022-10-19 23:59:59 MSK)

Реализуем горизонтальное масштабирование через поддержку кластерных конфигураций, состоящих из нескольких узлов, взаимодействующих друг с другом через реализованный HTTP API. Для этого в ServiceConfig передаётся статическая "топология", представленная в виде множества координат всех узлов кластера в формате http://<host>:<port>.

Кластер распределяет ключи между узлами детерминированным образом. В кластере хранится только одна копия данных. Нода, получившая запрос, проксирует его на узел, отвечающий за обслуживание соответствующего ключа. Таким образом, общая ёмкость кластера равна суммарной ёмкости входящих в него узлов.

Реализуйте один из алгоритмов распределения данных между узлами, например, consistent hashing, rendezvous hashing или что-то другое по согласованию с преподавателем.

Report

Присылайте pull request со своей реализацией поддержки кластерной конфигурации на review. Не забудьте нагрузить, отпрофилировать и проанализировать результаты профилирования под нагрузкой. С учётом шардирования набор тестов расширяется, поэтому не забывайте подмёрдживать upstream.