A Convolutional Neural Network Cascade for Face Detection

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Li_A_Convolutional_Neural_2015_CVPR_paper.pdf

Start

training classification net

12-net: python train_12net.py

24-net: python train_24net.py

48-net: python train_48net.py

training calibration net

12-calib net: python train_calib.py 12

24-calib net: python train_calib.py 24

48-calib net: python train_calib.py 48

hard negative mining(save hard neg db to disk in neg_train/neg_hard/)

hard neg db to train 24-net: python hard_neg_mining.py 24

hard neg db to train 48-net: python hard_neg_mining.py 48

test

python test.py

Implementation

Implemented with TensorFlow and yields similar result with paper

training set: AFLW dataset(positive), COCO dataset(negative)

test set: FDDB dataset

Result(gren: GT, blue: detected face)

face

2 5 3 1 8 7 6 4 9 10