/WhiteningBERT

source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

Primary LanguagePythonMIT LicenseMIT

WhiteningBERT

Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

Preparation

git clone https://github.com/Jun-jie-Huang/WhiteningBERT.git
pip install -r requirements.txt
cd examples/evaluation

Usage

Datasets

We use seven STS datasets, including STSBenchmark, SICK-Relatedness, STS12, STS13, STS14, STS15, STS16.

The processed data can be found in ./examples/datasets/.

Run

  1. To run a quick demo:
python evaluation_stsbenchmark.py \
			--pooling aver \
			--layer_num 1,12 \
			--whitening \
			--encoder_name bert-base-cased

Specify --pooing with cls or aver to choose whether use the [CLS] token or averaging all tokens. Also specify --layer_num to combine layers, separated by a comma.

  1. To enumerate all possible combinations of two layers and automatically evaluate the combinations consequently:
python evaluation_stsbenchmark_layer2.py \
			--pooling aver \
			--whitening \
			--encoder_name bert-base-cased
  1. To enumerate all possible combinations of N layers:
python evaluation_stsbenchmark_layerN.py \
			--pooling aver \
			--whitening \
			--encoder_name bert-base-cased\
			--combination_num 4
  1. You can also save the embeddings of the sentences
python evaluation_stsbenchmark_save_embed.py \
			--pooling aver \
			--layer_num 1,12 \
			--whitening \
			--encoder_name bert-base-cased \
			--summary_dir ./save_embeddings

A list of PLMs you can select:

  • bert-base-uncased , bert-large-uncased
  • roberta-base, roberta-large
  • bert-base-multilingual-uncased
  • sentence-transformers/LaBSE
  • albert-base-v1 , albert-large-v1
  • microsoft/layoutlm-base-uncased , microsoft/layoutlm-large-uncased
  • SpanBERT/spanbert-base-cased , SpanBERT/spanbert-large-cased
  • microsoft/deberta-base , microsoft/deberta-large
  • google/electra-base-discriminator
  • google/mobilebert-uncased
  • microsoft/DialogRPT-human-vs-rand
  • distilbert-base-uncased
  • ......

Acknowledgements

Codes are adapted from the repos of the EMNLP19 paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks and the EMNLP20 paper An Unsupervised Sentence Embedding Method by Mutual Information Maximization