Kai Li1, Wendi Sang1, Chang Zeng2, Runxuan Yang1, Guo Chen1, Xiaolin Hu1
1Tsinghua University, China
2National Institute of Informatics, Japan
Paper (Coming soon) | Demo
Welcome to the LibriSpace repository! This dataset has been created using SoundSpaces 2.0 to simulate environments with randomly placed microphones, sound sources, and noise sources. By moving sound sources, we have constructed a dynamic speech separation and speech enhancement dataset. The dataset includes speech from the LibriSpeech dataset and noise from the Freesound Dataset 50k (FSD50K) and the Free Music Archive (FMA). Music from FMA has been preprocessed using a pre-trained BSRNN music separation model to remove vocals. All audio in this dataset is sampled at 16 kHz and each sample is 60 seconds long.
-
[2024-07-31] We release the LibriSpace dataset, which includes speech separation and enhancement tasks.
-
[2024-07-24] We release the scripts for
dataset construction
and the pre-trained models forspeech separation and enhancement
.
You can download the pre-constructed dataset from the following link:
Dataset Name | Onedrive | Baidu Disk |
---|---|---|
train folder (40 split rar files, 377G) | [Download Link] | [Download Link] |
val.rar (4.9G) | [Download Link] | [Download Link] |
test.rar (2.2G) | [Download Link] | [Download Link] |
sep-benchmark data (8.57G) | [Download Link] | [Download Link] |
enh-benchmark data (7.70G) | [Download Link] | [Download Link] |
To construct the dataset yourself, please refer to the README in the LibriSpace/data-script
folder. This document provides detailed instructions on how to use the scripts provided to generate the dataset.
To set up the environment for training and inference, use the provided YAML file:
conda env create -f LibriSpace/torch-2.0.yml
conda activate librispace
Please check the contents of README.md in the sep-checkpoints and enh-checkpoints folders, download the appropriate pre-trained models in Release
and unzip them into the appropriate folders.
Navigate to the separation
directory and run the inference script with the specified configuration file:
cd separation
python inference.py --conf_dir=../sep-checkpoints/TFGNet-Noise/config.yaml
Navigate to the enhancement
directory and run the inference script with the specified configuration file:
cd enhancement
python inference.py --conf_dir=../enh-checkpoints/TaylorSENet-Noise/config.yaml
We have trained separation and enhancement models on the LibriSpace dataset. The results are as follows:
Model | SI-SNR | SDR | NB-PESQ | WB-PESQ | STOI | MOS_NOISE | MOS_REVERB | MOS_SIG | MOS_OVRL | WER (%) |
---|---|---|---|---|---|---|---|---|---|---|
Conv-TasNet | 4.81 | 7.13 | 2.00 | 1.46 | 0.73 | 2.45 | 3.04 | 2.30 | 2.10 | 53.82 |
DPRNN | 4.87 | 6.65 | 2.17 | 1.63 | 0.77 | 2.54 | 3.28 | 2.47 | 2.11 | 47.81 |
DPTNet | 11.51 | 13.00 | 2.82 | 2.35 | 0.87 | 3.00 | 3.15 | 2.68 | 2.32 | 28.13 |
SuDoRM-RF | 8.01 | 9.70 | 2.47 | 1.98 | 0.81 | 2.95 | 3.26 | 2.63 | 2.25 | 35.61 |
A-FRCNN | 9.17 | 10.63 | 2.70 | 2.16 | 0.84 | 2.98 | 3.24 | 2.72 | 2.32 | 35.44 |
TDANet | 9.27 | 11.00 | 2.72 | 2.22 | 0.85 | 3.05 | 3.22 | 2.74 | 2.36 | 30.46 |
SKIM | 7.23 | 8.78 | 2.34 | 1.86 | 0.79 | 2.65 | 3.23 | 2.47 | 2.11 | 38.92 |
BSRNN | 9.10 | 10.86 | 2.82 | 2.26 | 0.85 | 2.93 | 3.11 | 2.84 | 2.45 | 29.86 |
TF-GridNet | 15.38 | 16.81 | 3.58 | 3.08 | 0.93 | 3.11 | 3.10 | 2.91 | 2.49 | 12.04 |
Mossformer | 14.72 | 15.97 | 3.02 | 2.67 | 0.91 | 3.11 | 3.24 | 2.76 | 2.39 | 21.10 |
Mossformer2 | 14.84 | 16.09 | 3.17 | 2.83 | 0.91 | 3.20 | 3.21 | 2.78 | 2.40 | 19.51 |
Model | SI-SNR | SDR | NB-PESQ | WB-PESQ | STOI | MOS_NOISE | MOS_REVERB | MOS_SIG | MOS_OVRL | WER (%) |
---|---|---|---|---|---|---|---|---|---|---|
Conv-TasNet | 4.12 | 5.38 | 1.84 | 1.42 | 0.65 | 1.98 | 3.53 | 2.21 | 1.81 | 63.21 |
DPRNN | 4.37 | 5.73 | 1.98 | 1.50 | 0.73 | 2.47 | 3.28 | 2.45 | 2.07 | 51.33 |
DPTNet | 11.69 | 12.80 | 2.67 | 2.13 | 0.84 | 2.91 | 3.14 | 2.54 | 2.23 | 29.05 |
SuDoRM-RF | 6.84 | 8.34 | 2.15 | 1.66 | 0.77 | 2.80 | 3.28 | 2.48 | 2.12 | 41.37 |
A-FRCNN | 7.59 | 9.32 | 2.52 | 2.00 | 0.82 | 2.94 | 3.24 | 2.67 | 2.29 | 33.82 |
TDANet | 7.00 | 8.68 | 2.26 | 1.71 | 0.79 | 2.71 | 3.25 | 2.58 | 2.19 | 37.16 |
SKIM | 6.00 | 7.42 | 2.23 | 1.75 | 0.77 | 2.63 | 3.29 | 2.44 | 2.10 | 42.82 |
BSRNN | 6.96 | 8.66 | 2.36 | 1.76 | 0.79 | 2.54 | 3.13 | 2.79 | 2.32 | 41.73 |
TF-GridNet | 14.37 | 15.69 | 3.45 | 2.84 | 0.91 | 3.31 | 3.15 | 2.96 | 2.58 | 14.43 |
Mossformer | 11.80 | 13.17 | 2.82 | 2.26 | 0.86 | 3.05 | 3.28 | 2.61 | 2.25 | 26.64 |
Mossformer2 | 11.12 | 12.34 | 2.62 | 2.09 | 0.83 | 2.87 | 3.31 | 2.55 | 2.20 | 32.65 |
Model | Params (M) | MACs (G/s) | CPU Inference (1s, ms) | GPU Inference (1s, ms) | Inference GPU Memory (1s, MB) | Backward GPU (1s, ms) | Backward GPU Memory (1s, MB) |
---|---|---|---|---|---|---|---|
Conv-TasNet | 5.62 | 10.23 | 71.67 | 8.59 | 134.34 | 42.34 | 647.22 |
DPRNN | 2.72 | 43.79 | 379.49 | 15.88 | 285.49 | 38.57 | 1757.00 |
DPTNet | 2.80 | 53.37 | 481.37 | 20.04 | 20.67 | 58.28 | 3120.22 |
SuDoRM-RF | 2.72 | 4.60 | 87.81 | 17.83 | 138.94 | 68.40 | 1058.76 |
A-FRCNN | 6.13 | 81.20 | 102.22 | 36.19 | 157.20 | 128.40 | 1141.86 |
TDANet | 2.33 | 9.13 | 169.47 | 32.88 | 145.56 | 89.62 | 3064.75 |
SKIM | 5.92 | 21.92 | 245.98 | 10.54 | 273.07 | 38.62 | 1083.77 |
BSRNN | 25.97 | 123.10 | 577.11 | 59.78 | 135.48 | 184.26 | 2349.62 |
TF-GridNet | 14.43 | 525.68 | 1525.98 | 64.59 | 615.04 | 165.55 | 6687.60 |
Mossformer | 42.10 | 85.54 | 473.74 | 49.71 | 163.68 | 153.84 | 4385.91 |
Mossformer2 | 55.74 | 112.67 | 830.66 | 93.33 | 163.52 | 297.07 | 5617.39 |
Model | SI-SNR | SDR | NB-PESQ | WB-PESQ | STOI | MOS_NOISE | MOS_REVERB | MOS_SIG | MOS_OVRL | WER (%) |
---|---|---|---|---|---|---|---|---|---|---|
DCCRN | 8.41 | 11.29 | 2.81 | 2.17 | 0.87 | 2.94 | 3.01 | 2.80 | 2.39 | 21.78 |
Fullband | 7.82 | 8.34 | 3.05 | 2.34 | 0.89 | 3.30 | 3.04 | 2.95 | 2.54 | 22.04 |
FullSubNet | 9.48 | 11.92 | 3.19 | 2.48 | 0.90 | 3.24 | 3.05 | 2.98 | 2.54 | 20.01 |
Fast-FullSubNet | 8.14 | 8.71 | 3.13 | 2.41 | 0.90 | 3.31 | 3.05 | 2.99 | 2.58 | 21.13 |
FullSubNet+ | 8.93 | 11.07 | 3.06 | 2.35 | 0.89 | 3.12 | 2.97 | 2.91 | 2.47 | 20.73 |
TaylorSENet | 10.11 | 12.67 | 3.07 | 2.45 | 0.89 | 2.72 | 3.01 | 2.65 | 2.22 | 21.61 |
GaGNet | 10.01 | 12.78 | 3.12 | 2.48 | 0.89 | 2.77 | 3.05 | 2.64 | 2.23 | 21.40 |
G2Net | 9.82 | 12.22 | 3.03 | 2.39 | 0.89 | 2.78 | 3.00 | 2.64 | 2.22 | 22.02 |
Inter-SubNet | 10.34 | 12.87 | 3.32 | 2.61 | 0.91 | 3.39 | 3.10 | 3.05 | 2.62 | 18.83 |
SudoRMRF | 11.28 | 13.35 | 2.75 | 2.20 | 0.87 | 3.64 | 2.88 | 2.80 | 1.88 | 93.54 |
Model | SI-SNR | SDR | NB-PESQ | WB-PESQ | STOI | MOS_NOISE | MOS_REVERB | MOS_SIG | MOS_OVRL | WER (%) |
---|---|---|---|---|---|---|---|---|---|---|
DCCRN | 11.56 | 11.98 | 2.72 | 2.00 | 0.85 | 3.30 | 3.51 | 2.94 | 2.59 | 25.13 |
Fullband | 10.07 | 11.098 | 2.80 | 2.02 | 0.86 | 3.13 | 2.99 | 2.88 | 2.46 | 25.27 |
FullSubNet | 11.60 | 12.31 | 3.10 | 2.22 | 0.88 | 3.34 | 3.08 | 3.05 | 2.63 | 20.82 |
Fast-FullSubNet | 10.36 | 11.24 | 2.93 | 2.08 | 0.87 | 3.22 | 3.03 | 2.93 | 2.51 | 24.98 |
FullSubNet+ | 10.64 | 11.50 | 2.80 | 1.99 | 0.86 | 3.02 | 2.93 | 2.82 | 2.38 | 24.11 |
TaylorSENet | 12.18 | 13.04 | 3.06 | 2.33 | 0.88 | 2.76 | 2.92 | 2.65 | 2.24 | 23.46 |
GaGNet | 12.20 | 13.17 | 2.95 | 2.27 | 0.87 | 2.78 | 2.86 | 2.64 | 2.21 | 23.36 |
G2Net | 12.14 | 13.13 | 3.00 | 2.32 | 0.88 | 2.80 | 2.88 | 2.64 | 2.23 | 22.96 |
Inter-SubNet | 12.07 | 13.01 | 3.15 | 2.28 | 0.88 | 3.34 | 3.11 | 3.04 | 2.64 | 20.07 |
SudoRMRF | 12.99 | 13.86 | 2.61 | 2.01 | 0.85 | 3.91 | 2.80 | 2.98 | 1.93 | 88.72 |
Model | Params (M) | MACs (G/s) | CPU Inference (1s, ms) | GPU Inference (1s, ms) | Inference GPU Memory (1s, MB) | Backward GPU (1s, ms) | Backward GPU Memory (1s, MB) |
---|---|---|---|---|---|---|---|
DCCRN | 3.67 | 14.38 | 98.42 | 5.81 | 30.42 | 35.42 | 124.66 |
Fullband | 6.05 | 0.39 | 5.98 | 1.99 | 23.01 | 10.21 | 73.39 |
FullSubNet | 5.64 | 30.87 | 58.46 | 3.66 | 144.21 | 15.25 | 491.20 |
Fast-FullSubNet | 6.84 | 4.14 | 12.33 | 4.63 | 26.75 | 20.12 | 111.45 |
FullSubNet+ | 8.66 | 31.11 | 110.44 | 9.50 | 147.02 | 37.40 | 521.49 |
TaylorSENet | 5.40 | 6.15 | 70.96 | 26.84 | 139.33 | 76.63 | 329.40 |
GaGNet | 5.95 | 1.66 | 66.72 | 29.72 | 129.59 | 84.05 | 226.49 |
G2Net | 7.39 | 2.85 | 98.29 | 47.56 | 130.33 | 162.51 | 291.98 |
Inter-SubNet | 2.29 | 36.71 | 78.81 | 4.40 | 216.91 | 14.59 | 725.93 |
SudoRMRF | 2.70 | 2.12 | 42.43 | 11.42 | 8.52 | 52.59 | 293.44 |
We would like to express our gratitude to the following:
- LibriSpeech for providing the speech data.
- SoundSpaces for the simulation environment.
- Apple for providing dynamic audio synthesis scripts.
If you use this dataset in your research, please cite our repository as follows:
@online{LibriSpace2024,
title={LibriSpace: A Simulated Audio Toolkit for Speech Enhancement and Separation},
author={Li, Kai and Sang, Wendi and Zeng, Chang and Yang, Runxuan and Chen, Guo and Hu, Xiaolin},
year={2024},
url = {https://github.com/JusperLee/LibriSpace/},
urldate = {2024-7-23}
}
Thank you for using LibriSpace! We hope it helps advance your research in speech enhancement and separation. For any questions or issues, please open an issue in our GitHub repository.
If you have any concerns or technical problems, please contact tsinghua.kaili@gmail.com
.
This dataset is licensed under the CC BY-NC-SA 4.0 license.