Worklink - Remote Work and Collaboration Tools Microservice App
Table of Contents
Introduction
Worklink is a Remote Work and Collaboration Tools microservice app designed to enhance team productivity and enable seamless collaboration in remote work environments. The app provides a set of microservices that integrate essential collaboration tools and facilitate efficient communication, project management, and file sharing for distributed teams.
Features
- Real-time Messaging: Worklink offers real-time messaging capabilities, including one-on-one and group chats, to enable instant communication among team members.
- Task and Project Management: Easily manage tasks, create projects, and track progress using intuitive project management tools.
- File Sharing and Document Collaboration: Share files securely and collaborate on documents in real-time, enhancing team productivity.
- Video Conferencing: Conduct virtual meetings and video conferences with built-in video conferencing features.
- Multi-platform Support: Worklink is designed to work across various platforms, including web browsers, Android, and iOS.
- Scalable Architecture: The microservice architecture ensures scalability and flexibility to handle large-scale remote work scenarios.
Installation
To install and use Worklink, follow these steps:
- Clone the repository:
git clone https://github.com/worklink-app/worklink.git
- Install dependencies:
npm install
- Configure the environment variables: Copy
.env.example
to.env
and set the necessary configuration parameters. - Start the microservices:
npm start
Usage
Worklink provides a RESTful API for communication with the microservices. Here's a basic example of how to use Worklink in your application:
import axios from 'axios';
const baseURL = 'https://api.worklink.com';
// Example API call to send a message
async function sendMessage(receiverId, message) {
try {
const response = await axios.post(`${baseURL}/messages`, {
receiverId,
message,
});
return response.data;
} catch (error) {
console.error('Error sending message:', error);
throw error;
}
}
For more detailed usage instructions and API endpoints, please refer to the API Documentation.
API Documentation
For detailed information on the available API endpoints and their usage, please refer to the API documentation.
Supported Platforms
Worklink is built to work on various platforms, allowing team members to collaborate seamlessly from different devices. The following platforms are supported:
- Web Browsers (Google Chrome, Mozilla Firefox, Safari, Microsoft Edge)
- Android Mobile Devices (Minimum version: Android 6.0 Marshmallow)
- iOS Devices (Minimum version: iOS 12)
Contributing
We welcome contributions from the community! To contribute to Worklink, follow these steps:
- Fork the repository.
- Create a new branch for your feature:
git checkout -b feature-name
- Commit your changes:
git commit -m "Add feature"
- Push to the branch:
git push origin feature-name
- Submit a pull request.
Please ensure that you've read and adhered to our Code of Conduct before contributing.
License
Worklink is open-source software licensed under the MIT License.
Feel free to customize this README file with additional information about your app, team, and development process. Good luck with your Worklink project! If you have any other questions or need further assistance, feel free to ask.
Project Structure
Node is required for generation and recommended for development. package.json
is always generated for a better development experience with prettier, commit hooks, scripts and so on.
In the project root, JHipster generates configuration files for tools like git, prettier, eslint, husky, and others that are well known and you can find references in the web.
/src/*
structure follows default Java structure.
-
.yo-rc.json
- Yeoman configuration file JHipster configuration is stored in this file atgenerator-jhipster
key. You may findgenerator-jhipster-*
for specific blueprints configuration. -
.yo-resolve
(optional) - Yeoman conflict resolver Allows to use a specific action when conflicts are found skipping prompts for files that matches a pattern. Each line should match[pattern] [action]
with pattern been a Minimatch pattern and action been one of skip (default if ommited) or force. Lines starting with#
are considered comments and are ignored. -
.jhipster/*.json
- JHipster entity configuration files -
npmw
- wrapper to use locally installed npm. JHipster installs Node and npm locally using the build tool by default. This wrapper makes sure npm is installed locally and uses it avoiding some differences different versions can cause. By using./npmw
instead of the traditionalnpm
you can configure a Node-less environment to develop or test your application. -
/src/main/docker
- Docker configurations for the application and services that the application depends on
Development
Before you can build this project, you must install and configure the following dependencies on your machine:
- Node.js: We use Node to run a development web server and build the project. Depending on your system, you can install Node either from source or as a pre-packaged bundle.
After installing Node, you should be able to run the following command to install development tools. You will only need to run this command when dependencies change in package.json.
npm install
We use npm scripts and Angular CLI with Webpack as our build system.
Run the following commands in two separate terminals to create a blissful development experience where your browser auto-refreshes when files change on your hard drive.
./mvnw
npm start
Npm is also used to manage CSS and JavaScript dependencies used in this application. You can upgrade dependencies by
specifying a newer version in package.json. You can also run npm update
and npm install
to manage dependencies.
Add the help
flag on any command to see how you can use it. For example, npm help update
.
The npm run
command will list all of the scripts available to run for this project.
PWA Support
JHipster ships with PWA (Progressive Web App) support, and it's turned off by default. One of the main components of a PWA is a service worker.
The service worker initialization code is disabled by default. To enable it, uncomment the following code in src/main/webapp/app/app.module.ts
:
ServiceWorkerModule.register('ngsw-worker.js', { enabled: false }),
Managing dependencies
For example, to add Leaflet library as a runtime dependency of your application, you would run following command:
npm install --save --save-exact leaflet
To benefit from TypeScript type definitions from DefinitelyTyped repository in development, you would run following command:
npm install --save-dev --save-exact @types/leaflet
Then you would import the JS and CSS files specified in library's installation instructions so that Webpack knows about them: Edit src/main/webapp/app/app.module.ts file:
import 'leaflet/dist/leaflet.js';
Edit src/main/webapp/content/scss/vendor.scss file:
@import 'leaflet/dist/leaflet.css';
Note: There are still a few other things remaining to do for Leaflet that we won't detail here.
For further instructions on how to develop with JHipster, have a look at Using JHipster in development.
Developing Microfrontend
Microservices doesn't contain every required backend feature to allow microfrontends to run alone. You must start a pre-built gateway version or from source.
Start gateway from source:
cd gateway
npm run docker:db:up # start database if necessary
npm run docker:others:up # start service discovery and authentication service if necessary
npm run app:start # alias for ./(mvnw|gradlew)
Microfrontend's build-watch
script is configured to watch and compile microfrontend's sources and synchronizes with gateway's frontend.
Start it using:
cd microfrontend
npm run docker:db:up # start database if necessary
npm run build-watch
It's possible to run microfrontend's frontend standalone using:
cd microfrontend
npm run docker:db:up # start database if necessary
npm watch # alias for `npm start` and `npm run backend:start` in parallel
Using Angular CLI
You can also use Angular CLI to generate some custom client code.
For example, the following command:
ng generate component my-component
will generate few files:
create src/main/webapp/app/my-component/my-component.component.html
create src/main/webapp/app/my-component/my-component.component.ts
update src/main/webapp/app/app.module.ts
JHipster Control Center
JHipster Control Center can help you manage and control your application(s). You can start a local control center server (accessible on http://localhost:7419) with:
docker compose -f src/main/docker/jhipster-control-center.yml up
OAuth 2.0 / OpenID Connect
Congratulations! You've selected an excellent way to secure your JHipster application. If you're not sure what OAuth and OpenID Connect (OIDC) are, please see What the Heck is OAuth?
To log in to your app, you'll need to have Keycloak up and running. The JHipster Team has created a Docker container for you that has the default users and roles. Start Keycloak using the following command.
docker compose -f src/main/docker/keycloak.yml up
The security settings in src/main/resources/config/application.yml
are configured for this image.
spring:
...
security:
oauth2:
client:
provider:
oidc:
issuer-uri: http://localhost:9080/realms/jhipster
registration:
oidc:
client-id: web_app
client-secret: web_app
scope: openid,profile,email
Some of Keycloak configuration is now done in build time and the other part before running the app, here is the list of all build and configuration options.
Before moving to production, please make sure to follow this guide for better security and performance.
Also, you should never use start-dev
nor KC_DB=dev-file
in production.
When using Kubernetes, importing should be done using init-containers (with a volume when using db=dev-file
).
Okta
If you'd like to use Okta instead of Keycloak, it's pretty quick using the Okta CLI. After you've installed it, run:
okta register
Then, in your JHipster app's directory, run okta apps create
and select JHipster. This will set up an Okta app for you, create ROLE_ADMIN
and ROLE_USER
groups, create a .okta.env
file with your Okta settings, and configure a groups
claim in your ID token.
Run source .okta.env
and start your app with Maven or Gradle. You should be able to sign in with the credentials you registered with.
If you're on Windows, you should install WSL so the source
command will work.
If you'd like to configure things manually through the Okta developer console, see the instructions below.
First, you'll need to create a free developer account at https://developer.okta.com/signup/. After doing so, you'll get your own Okta domain, that has a name like https://dev-123456.okta.com
.
Modify src/main/resources/config/application.yml
to use your Okta settings.
spring:
...
security:
oauth2:
client:
provider:
oidc:
issuer-uri: https://{yourOktaDomain}/oauth2/default
registration:
oidc:
client-id: {clientId}
client-secret: {clientSecret}
security:
Create an OIDC App in Okta to get a {clientId}
and {clientSecret}
. To do this, log in to your Okta Developer account and navigate to Applications > Add Application. Click Web and click the Next button. Give the app a name you’ll remember, specify http://localhost:8080
as a Base URI, and http://localhost:8080/login/oauth2/code/oidc
as a Login Redirect URI. Click Done, then Edit and add http://localhost:8080
as a Logout redirect URI. Copy and paste the client ID and secret into your application.yml
file.
Create a ROLE_ADMIN
and ROLE_USER
group and add users into them. Modify e2e tests to use this account when running integration tests. You'll need to change credentials in src/test/javascript/e2e/account/account.spec.ts
and src/test/javascript/e2e/admin/administration.spec.ts
.
Navigate to API > Authorization Servers, click the Authorization Servers tab and edit the default one. Click the Claims tab and Add Claim. Name it "groups", and include it in the ID Token. Set the value type to "Groups" and set the filter to be a Regex of .*
.
After making these changes, you should be good to go! If you have any issues, please post them to Stack Overflow. Make sure to tag your question with "jhipster" and "okta".
Auth0
If you'd like to use Auth0 instead of Keycloak, follow the configuration steps below:
- Create a free developer account at https://auth0.com/signup. After successful sign-up, your account will be associated with a unique domain like
dev-xxx.us.auth0.com
- Create a new application of type
Regular Web Applications
. Switch to theSettings
tab, and configure your application settings like:- Allowed Callback URLs:
http://localhost:8080/login/oauth2/code/oidc
- Allowed Logout URLs:
http://localhost:8080/
- Allowed Callback URLs:
- Navigate to User Management > Roles and create new roles named
ROLE_ADMIN
, andROLE_USER
. - Navigate to User Management > Users and create a new user account. Click on the Role tab to assign roles to the newly created user account.
- Navigate to Auth Pipeline > Rules and create a new Rule. Choose
Empty rule
template. Provide a meaningful name likeJHipster claims
and replaceScript
content with the following and Save.
function (user, context, callback) {
user.preferred_username = user.email;
const roles = (context.authorization || {}).roles;
function prepareCustomClaimKey(claim) {
return `https://www.jhipster.tech/${claim}`;
}
const rolesClaim = prepareCustomClaimKey('roles');
if (context.idToken) {
context.idToken[rolesClaim] = roles;
}
if (context.accessToken) {
context.accessToken[rolesClaim] = roles;
}
callback(null, user, context);
}
- In your
JHipster
application, modifysrc/main/resources/config/application.yml
to use your Auth0 application settings:
spring:
...
security:
oauth2:
client:
provider:
oidc:
# make sure to include the ending slash!
issuer-uri: https://{your-auth0-domain}/
registration:
oidc:
client-id: {clientId}
client-secret: {clientSecret}
scope: openid,profile,email
jhipster:
...
security:
oauth2:
audience:
- https://{your-auth0-domain}/api/v2/
Doing API-First development using openapi-generator-cli
OpenAPI-Generator is configured for this application. You can generate API code from the src/main/resources/swagger/api.yml
definition file by running:
./mvnw generate-sources
Then implements the generated delegate classes with @Service
classes.
To edit the api.yml
definition file, you can use a tool such as Swagger-Editor. Start a local instance of the swagger-editor using docker by running: docker compose -f src/main/docker/swagger-editor.yml up -d
. The editor will then be reachable at http://localhost:7742.
Refer to Doing API-First development for more details.
Building for production
Packaging as jar
To build the final jar and optimize the Worklink application for production, run:
./mvnw -Pprod clean verify
This will concatenate and minify the client CSS and JavaScript files. It will also modify index.html
so it references these new files.
To ensure everything worked, run:
java -jar target/*.jar
Then navigate to http://localhost:8081 in your browser.
Refer to Using JHipster in production for more details.
Packaging as war
To package your application as a war in order to deploy it to an application server, run:
./mvnw -Pprod,war clean verify
Testing
To launch your application's tests, run:
./mvnw verify
Client tests
Unit tests are run by Jest. They're located in src/test/javascript/ and can be run with:
npm test
Other tests
Performance tests are run by Gatling and written in Scala. They're located in src/test/java/gatling/simulations.
You can execute all Gatling tests with
./mvnw gatling:test
For more information, refer to the Running tests page.
Code quality
Sonar is used to analyse code quality. You can start a local Sonar server (accessible on http://localhost:9001) with:
docker compose -f src/main/docker/sonar.yml up -d
Note: we have turned off forced authentication redirect for UI in src/main/docker/sonar.yml for out of the box experience while trying out SonarQube, for real use cases turn it back on.
You can run a Sonar analysis with using the sonar-scanner or by using the maven plugin.
Then, run a Sonar analysis:
./mvnw -Pprod clean verify sonar:sonar -Dsonar.login=admin -Dsonar.password=admin
If you need to re-run the Sonar phase, please be sure to specify at least the initialize
phase since Sonar properties are loaded from the sonar-project.properties file.
./mvnw initialize sonar:sonar -Dsonar.login=admin -Dsonar.password=admin
Additionally, Instead of passing sonar.password
and sonar.login
as CLI arguments, these parameters can be configured from sonar-project.properties as shown below:
sonar.login=admin
sonar.password=admin
For more information, refer to the Code quality page.
Using Docker to simplify development (optional)
You can use Docker to improve your JHipster development experience. A number of docker-compose configuration are available in the src/main/docker folder to launch required third party services.
For example, to start a postgresql database in a docker container, run:
docker compose -f src/main/docker/postgresql.yml up -d
To stop it and remove the container, run:
docker compose -f src/main/docker/postgresql.yml down
You can also fully dockerize your application and all the services that it depends on. To achieve this, first build a docker image of your app by running:
npm run java:docker
Or build a arm64 docker image when using an arm64 processor os like MacOS with M1 processor family running:
npm run java:docker:arm64
Then run:
docker compose -f src/main/docker/app.yml up -d
When running Docker Desktop on MacOS Big Sur or later, consider enabling experimental Use the new Virtualization framework
for better processing performance (disk access performance is worse).
For more information refer to Using Docker and Docker-Compose, this page also contains information on the docker-compose sub-generator (jhipster docker-compose
), which is able to generate docker configurations for one or several JHipster applications.
Continuous Integration (optional)
To configure CI for your project, run the ci-cd sub-generator (jhipster ci-cd
), this will let you generate configuration files for a number of Continuous Integration systems. Consult the Setting up Continuous Integration page for more information.