/KAIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DnCNN, FFDNet, SRMD, DPSR, MSRResNet, ESRGAN, IMDN

Primary LanguagePython

Training and testing codes for DnCNN, FFDNet, SRMD, DPSR, MSRResNet, ESRGAN, IMDN

Training

Testing

  • main_test_dncnn.py ---------------> model_zoo: dncnn_15.pth, dncnn_25.pth, dncnn_50.pth, dncnn_gray_blind.pth, dncnn_color_blind.pth, dncnn3.pth
  • main_test_fdncnn.py --------------> model_zoo: fdncnn_gray.pth, fdncnn_color.pth, fdncnn_gray_clip.pth, fdncnn_color_clip.pth
  • main_test_ffdnet.py ---------------> model_zoo: ffdnet_gray.pth, ffdnet_color.pth, ffdnet_gray_clip.pth, ffdnet_color_clip.pth
  • main_test_srmd.py ----------------> model_zoo: srmdnf_x2.pth, srmdnf_x3.pth, srmdnf_x4.pth, srmd_x2.pth, srmd_x3.pth, srmd_x4.pth The above models are converted from MatConvNet.
  • main_test_dpsr.py -----------------> model_zoo: dpsr_x2.pth, dpsr_x3.pth, dpsr_x4.pth, dpsr_x4_gan.pth
  • main_test_msrresnet.py -----------> model_zoo: msrresnet_x4_psnr.pth, msrresnet_x4_gan.pth
  • main_test_rrdb.py -----------------> model_zoo: rrdb_x4_psnr.pth, rrdb_x4_esrgan.pth
  • main_test_imdn.py ----------------> model_zoo: imdn_x4.pth

References

@article{zhang2017beyond, % DnCNN
  title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={26},
  number={7},
  pages={3142--3155},
  year={2017}
}
@article{zhang2018ffdnet, % FFDNet, FDnCNN
  title={FFDNet: Toward a fast and flexible solution for CNN-based image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={27},
  number={9},
  pages={4608--4622},
  year={2018}
}
@inproceedings{zhang2018learning, % SRMD
  title={Learning a single convolutional super-resolution network for multiple degradations},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3262--3271},
  year={2018}
}
@inproceedings{zhang2019deep, % DPSR
  title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1671--1681},
  year={2019}
}
@InProceedings{wang2018esrgan, % ESRGAN, MSRResNet
    author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
    title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
    booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
    month = {September},
    year = {2018}
}
@inproceedings{hui2019lightweight, % IMDN
  title={Lightweight Image Super-Resolution with Information Multi-distillation Network},
  author={Hui, Zheng and Gao, Xinbo and Yang, Yunchu and Wang, Xiumei},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia (ACM MM)},
  pages={2024--2032},
  year={2019}
}
@inproceedings{zhang2019aim, % IMDN
  title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results},
  author={Kai Zhang and Shuhang Gu and Radu Timofte and others},
  booktitle={IEEE International Conference on Computer Vision Workshops},
  year={2019}
}