This is a course project based on Verilog.
A CNN accelerator architecture based on Eyeriss v2 is modeled to progress convolutional layers, full connected layers and depth-conv layers.
- GLB_CLUSTER
- GLB_WGHT
- GLB_IACT
- GLB_PSUM
- PE_CLUSTER
- PE
- SPad
- MUX
- MAC
-
ROUTER_CLUSTER
- ROUTER_IACT
- ROUTER_WGHT
- ROUTER_PSUM
- 1_CLUSTER
- HMNOC_1_CLUSTER_TB
- 4_CLUSTER
- HMNOC_4_CLUSTER_TB
- {Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,” ISCA, 2016.}
- {Y.-H. Chen, S. Member, T.-J. Yang, J. Emer, V. Sze, and S. Member, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices,” ISCA, 2019.}
- https://github.com/karthisugumar/CSE240D-Hierarchical_Mesh_NoC-Eyeriss_v2