/bayesian-age-detection

bayesian model to detect the age of Twitter users

Primary LanguagePython

bayesian-age-detection

This is code acompanying the paper 'Probabilistic Inference of Twitter Users' Age based on What They Follow' https://pdfs.semanticscholar.org/8db1/5d1ab276fd5460b6ecccb5354655aa6ee7bd.pdf. These instructions describe how to run the bayesian model to detect the age of Twitter users. This model uses a hierarchical Bayesian framework to generalise from several thousand labelled examples to predict the age of 700 million Twitter users. Labelled data was mined from Twitter description fields using the included regex. For testing we include a sample of 30k anonymised labelled accounts with this repo.

Getting Started

To run the model clone the repo

cd to the project's root folder

python src/python/age_detector.py resources/features.p resources/labels.p -nfolds 3

Prerequisites

The code uses the numpy, pandas and scikit-learn python packages. We recommend installing these through Anaconda

Converting raw data to features

For privacy reasons we can't include the raw data. However, to increase the general utility of the code, we include our pre-processing script and a public sample of Twitter data with labelled incomes. To generate features for this data set navigate to the src/python folder and type

python generate_features

into a terminal. This will create income_X.p and income_y.p files in the resources folder, which have the same format as the Twitter age data.

Authors

Ben Chamberlain

Citation

If this code helps, please cite:

Chamberlain, Benjamin Paul, Clive Humby, and Marc Peter Deisenroth. "Probabilistic Inference of Twitter Users’ Age based on What They Follow." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017.