/DGMN2

消息传递网络,可变的图卷积神经网络

Primary LanguagePythonApache License 2.0Apache-2.0

DGMN2

This repository contains the implementation of Dynamic Graph Message Passing Networks.

Main results

Image Classification

ImageNet-1K

Method Params (M) FLOPs (G) Top1 Acc (%)
DGMN2-Tiny 12.1 2.3 78.7
DGMN2-Small 21.0 4.3 81.7
DGMN2-Medium 35.8 7.1 82.5
DGMN2-Large 48.3 10.4 83.3

Object Detection

COCO validation set

Method Backbone Lr schd box AP mask AP
RetinaNet DGMN2-Tiny 1x 39.7 -
RetinaNet DGMN2-Small 1x 42.5 -
RetinaNet DGMN2-Medium 1x 43.7 -
RetinaNet DGMN2-Large 1x 44.7 -
Mask R-CNN DGMN2-Tiny 1x 40.2 37.2
Mask R-CNN DGMN2-Small 1x 43.4 39.7
Mask R-CNN DGMN2-Medium 1x 44.4 40.2
Mask R-CNN DGMN2-Large 1x 46.2 41.6
Deformable DETR DGMN2-Tiny 50e 44.4 -
Deformable DETR DGMN2-Small 50e 47.3 -
Deformable DETR DGMN2-Medium 50e 48.4 -
Deformable DETR+ DGMN2-Small 50e 47.3 -
Sparse R-CNN DGMN2-Small 3x 48.2 -

Semantic Segmentation

Cityscapes validation set

Method Backbone Iters mIoU mIoU (ms + flip)
Semantic FPN DGMN2-Tiny 40K 78.09 79.40
Semantic FPN DGMN2-Small 40K 80.65 81.58
Semantic FPN DGMN2-Medium 40K 80.60 81.79
Semantic FPN DGMN2-Large 40K 81.75 82.64
SETR-Naive DGMN2-Tiny 40K 77.23 78.23
SETR-Naive DGMN2-Small 40K 80.31 81.04
SETR-Naive DGMN2-Medium 40K 80.83 81.39
SETR-Naive DGMN2-Large 40K 81.80 82.61
SETR-PUP DGMN2-Tiny 40K 78.25 79.26
SETR-PUP DGMN2-Small 40K 79.78 80.73
SETR-PUP DGMN2-Medium 40K 80.96 81.80
SETR-PUP DGMN2-Large 40K 81.58 82.27
SETR-MLA DGMN2-Tiny 40K 78.25 79.32
SETR-MLA DGMN2-Small 40K 80.79 81.62
SETR-MLA DGMN2-Medium 40K 81.09 82.00
SETR-MLA DGMN2-Large 40K 81.55 81.98

Getting Started

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Reference

@inproceedings{zhang2020dynamic,
  title={Dynamic Graph Message Passing Networks},
  author={Zhang, Li and Xu, Dan and Arnab, Anurag and Torr, Philip H.S.},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}
@article{zhang2022dynamic,
  title={Dynamic Graph Message Passing Networks},
  author={Zhang, Li and Chen, Mohan and Arnab, Anurag and Xue, Xiangyang and Torr, Philip H.S.},
  journal={arXiv preprint arXiv:1908.06955},
  year={2022}
}

Acknowledgement

Thanks to previous open-sourced repo:
PVT
PyTorch Image Models
MMDetection
MMSegmentation