Artifact of "Automated Assertion Generation via Information Retrieval and Its Integration with Deep Learning"
Depedency:
- pytorch
- javalang
unzip Dataset in ./Result and create a config file to indicate data path like:
SomeWhere/TrainMethod.txt
SomeWhere/TestMethod.txt
SomeWhere/TrainAssertion.txt
SomeWhere/TestAssertion.txt
SomeWhere/ValMethod.txt
SomeWhere/ValMethod.txt
python ./Retrieval/IR.py $input_config $result_path
New DataSet
python ./Retrieval/IR.py $result_path
New
Old DataSet
python ./Retrieval/IR.py $result_path Old
Data Preparation
python ./NeuralModel/DataPrepration $input_config $result_path $neural_data_path_train train
Model Training
python ./NeuralModel/main $neural_data_path_train $neural_result_path train
Data Preparation
python ./NeuralModel/DataPrepration.py $input_config $result_path $neural_data_path_evaluate evaluate
Model Evaluating
python ./NeuralModel/main.py $neural_data_path_evaluate $neural_result_path evaluate
-
Before Evaluate Integrated Approach, Use a deep learning generative model (i.e. ATLAS) to generate result.
-
Generate Result from Adapt NN and Integration
python AdaptionIntegration.py $input_config $result_path $neural_result_path $integration_threshold
- Evaluate Result
Old Dataset
python countMultiOldDataSet.py $result_path
New Dataset
python countMultiNewDataSet.py $result_path