Collection of links for different specific issues
-
Readme template
https://gist.github.com/PurpleBooth/109311bb0361f32d87a2 -
Documentation-handbook
https://github.com/jamiebuilds/documentation-handbook -
Documenting on github
https://guides.github.com/features/wikis/ -
How to write a good documentation
https://guides.lib.berkeley.edu/how-to-write-good-documentation
https://www.sohamkamani.com/blog/how-to-write-good-documentation/ -
How to visualize md files offline
https://github.com/joeyespo/grip -
Auto-Documenting a Python Project Using Sphinx
https://medium.com/better-programming/auto-documenting-a-python-project-using-sphinx-8878f9ddc6e9 -
Clear, Functional C++ Documentation with Sphinx + Breathe + Doxygen + CMake
https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
- Aruco
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html - AprilTag
https://april.eecs.umich.edu/software/apriltag
- How to write a good review
https://m.youtube.com/watch?v=W1zPtTt43LI
- How I Read a Paper: Facebook's DETR (Video Tutorial)
https://www.youtube.com/watch?v=Uumd2zOOz60&app=desktop
- Common indexing and measure in paper
https://github.com/aditya30394/Person-Re-Identification https://en.wikipedia.org/wiki/Jaccard_index - Map Averace Prevision (mAP)
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173 - Rank
https://medium.com/analytics-vidhya/ranked-accuracy-11bdaef795e3 - Texute Structure Similarity (SSIM) - Human perspective
https://ieeexplore.ieee.org/document/1284395 - Texture Peak Signal-to-noise ratio (PSNR) - Pixel differencies
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://www.ni.com/ja-jp/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html - Learned Perceptual Image Patch Similarity (LPIPS)
Paper: Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.
Code: https://github.com/richzhang/PerceptualSimilarity - Understanding AUC - ROC Curve
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
-
Understanding PyTorch with an example: a step-by-step tutorial
https://towardsdatascience.com/understanding-pytorch-with-an-example-a-step-by-step-tutorial-81fc5f8c4e8e -
Simple regression: linear regression
https://medium.com/@benjamin.phillips22/simple-regression-with-neural-networks-in-pytorch-313f06910379 -
Graph and irregular structures
https://github.com/rusty1s/pytorch_geometric
-
PyTorch wrapper for ML researchers
https://github.com/PyTorchLightning/pytorch-lightning -
C++ of pytorch exaples for Deep Learning Researchers
https://github.com/prabhuomkar/pytorch-cpp
-- Convolution
-
How to train neural network
https://towardsdatascience.com/pytorch-basics-how-to-train-your-neural-net-intro-to-cnn-26a14c2ea29 -
Convolution 1D 2D
https://discuss.pytorch.org/t/understanding-convolution-1d-output-and-input/30764
https://datascience.stackexchange.com/questions/32455/which-convolution-should-i-use-conv2d-or-conv1d -
How To Train Your Neural Net
Collection of examples about how to train a neural network.
https://github.com/theairbend3r/how-to-train-your-neural-net
-- Loss functions
- Loss functions in PyTorch
https://medium.com/udacity-pytorch-challengers/a-brief-overview-of-loss-functions-in-pytorch-c0ddb78068f7 - Build own loss
https://discuss.pytorch.org/t/build-your-own-loss-function-in-pytorch/235/3
-- NN Learning Issues
-
NN does not learn
https://stats.stackexchange.com/questions/352036/what-should-i-do-when-my-neural-network-doesnt-learn -
How to Evaluate Efficient Deep Neural Network Approaches @ CVPR 2020
https://www.youtube.com/watch?v=HTu7RokJsxc&app=desktop
-- Gradient
https://ruder.io/optimizing-gradient-descent/
https://medium.com/syncedreview/iclr-2019-fast-as-adam-good-as-sgd-new-optimizer-has-both-78e37e8f9a34
https://stats.stackexchange.com/questions/316464/how-does-batch-size-affect-convergence-of-sgd-and-why
-- Combine two separate networks
https://groups.google.com/forum/#!topic/torch7/FACB5BKS4_Q
https://discuss.pytorch.org/t/combining-trained-models-in-pytorch/28383
-- Siamese Neural Network
- ADL4CV - Siamese Neural Networks and Similarity Learning
https://www.youtube.com/watch?v=6e65XfwmIWE&app=desktop
-
Collection of models (code/doc) in pytorch. NB: Not all the models run.
https://github.com/eriklindernoren/PyTorch-GAN -
[CVPR 2020] Image2StyleGAN++: How to Edit the Embedded Images?
https://www.youtube.com/watch?v=yd5WczbFt68&app=desktop
Paper: https://arxiv.org/abs/1911.11544v1 -
[ICCV 2019 - Best Paper] SinGAN
code: https://github.com/tamarott/SinGAN
Paper: https://arxiv.org/pdf/1905.01164.pdf
Youtube: https://www.youtube.com/watch?v=xk8bWLZk4DU&ab_channel=TamarRottShaham
Online Description: https://www.youtube.com/watch?v=-f8sz8AExdc&ab_channel=HenryAILabs
-- Features
- CVPR2020 tutorial: Local Features: From SIFT to Differentiable Methods
https://www.youtube.com/watch?v=ZscK5p9hZBI&app=desktop
-- Geometry
- [CVPR 2020 Oral] High-dimensional Convolutional Neural Networks for Geometric Pattern Recognition
https://www.youtube.com/watch?v=bsPGPRrAJOY&app=desktop
-- Unsupervised
- Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild
Paper: https://arxiv.org/pdf/1911.11130.pdf
Code: https://github.com/elliottwu/unsup3d
-- Scene reconstruction
-
Neural Radiance Fields for Unconstrained Photo Collections https://nerf-w.github.io/
Paper: https://arxiv.org/abs/2008.02268 -
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes
https://www.cs.cornell.edu/~zl548/NSFF/
Paper: https://arxiv.org/abs/2011.13084
Code: https://github.com/zhengqili/Neural-Scene-Flow-Fields -
3D Photography using Context-aware Layered Depth Inpainting
https://shihmengli.github.io/3D-Photo-Inpainting/
Paper: https://drive.google.com/file/d/17ki_YAL1k5CaHHP3pIBFWvw-ztF4CCPP/view
Code:
-- Monocular
-
3D Packing for Self-Supervised Monocular Depth Estimation [CVPR 2020]
https://www.youtube.com/watch?v=b62iDkLgGSI&app=desktop
Paper: https://arxiv.org/abs/1905.02693
Code: https://github.com/tri-ml/packnet-sfm -
3D Dense reconstruction based on structure from motion algorithms [SIGGRAPH 2020]
https://roxanneluo.github.io/Consistent-Video-Depth-Estimation/
Paper: https://arxiv.org/pdf/2004.15021.pdf
Code: https://github.com/facebookresearch/consistent_depth
-- RGB
- BubbleNets: CVPR 2019 Oral Presentation (Best Paper Award Finalist!)
https://www.youtube.com/watch?v=XBEMuFVC2lg&app=desktop
Paper: http://openaccess.thecvf.com/content_CVPR_2019/html/Griffin_BubbleNets_Learning_to_Select_the_Guidance_Frame_in_Video_Object_CVPR_2019_paper.html
Code: https://github.com/griffbr/BubbleNets
-- Perspective Camera
- Popular object detection frameworks
https://github.com/open-mmlab/mmdetection
https://github.com/facebookresearch/detectron2 - Old project useful for practice but no longer mantained
https://github.com/jwyang/faster-rcnn.pytorch
-- Pytorch Efficient Detection
-- Small Object Detection
-
Awesome Tiny Object Detection
https://github.com/kuanhungchen/awesome-tiny-object-detection -
small-object-detection Experiments with different models for object detection on the Pascal VOC 2007 dataset.
https://github.com/fl16180/small-object-detection
-- Keras & Tensorflow
- Mask R-CNN for Object Detection and Segmentation
https://github.com/KhoronusFork/Mask_RCNN
-- Single Shot
-
CVPR 2020: D3S - A Discriminative Single Shot Segmentation Tracker
https://www.youtube.com/watch?v=E3mN_hCRHu0&app=desktop
Paper: https://arxiv.org/abs/1911.08862
Code: https://github.com/alanlukezic/d3s -
Fast Online Object Tracking and Segmentation: A Unifying Approach
http://www.robots.ox.ac.uk/~qwang/SiamMask/
Paper: https://arxiv.org/pdf/1812.05050.pdf
Code: https://github.com/foolwood/SiamMask
Code Modified: https://github.com/JosieHong/SiamMask_on_Your_Own_Dataset
Annotation Version: https://github.com/umedalab/siammask_annotation
-- Object Tracking Given Bounding Boxes
-
Simple Online and Realtime Tracking (SORT)
Code: https://github.com/abewley/sort -
Simple Online and Realtime Tracking with a Deep Association Metric (Deep SORT)
Code: https://github.com/abhyantrika/nanonets_object_tracking -
Tracking without bells and whistles
https://github.com/phil-bergmann/tracking_wo_bnw -
pymot
This is a python implementation which determines the MOTP and MOTA metrics from a set of ground truth tracks and a set of hypothesis tracks given by the tracker to be evaluated.
https://github.com/Videmo/pymot
-- Challenge/Benchmark
- Multiple Object Tracking Benchmark
https://motchallenge.net/
-- Benchmark
- py-motmetrics
The py-motmetrics library provides a Python implementation of metrics for benchmarking multiple object trackers (MOT).
https://github.com/cheind/py-motmetrics
-- Monocular
-
Human pose estimation
https://github.com/wangzheallen/awesome-human-pose-estimation -
Pose (papers with code)
https://paperswithcode.com/task/pose-prediction/latest -
VIBE: Video Inference for Human Body Pose and Shape Estimation (CVPR 2020)
https://www.youtube.com/watch?v=rIr-nX63dUA&app=desktop
Paper: https://arxiv.org/abs/1912.05656
Code: https://github.com/mkocabas/VIBE -
CVPR 2020 Oral: Combining detection and tracking for human pose estimation in videos
Paper: https://arxiv.org/abs/2003.13743
-- Commercial Projects
-
Only web Cam. Real time motion capture. - 3D pose estimation
https://www.youtube.com/watch?v=o06Zo7ZU4Mo&app=desktop
Code: https://github.com/digital-standard/ThreeDPoseUnityBarracuda -
AlphaPose
AlphaPose is an accurate multi-person pose estimator
https://github.com/MVIG-SJTU/AlphaPose -
Keras Openpose
keras-openpose-reproduce
https://github.com/kevinlin311tw/keras-openpose-reproduce
-- Monocular
- VideoPose3D
3D human pose estimation in video with temporal convolutions and semi-supervised training
https://github.com/facebookresearch/VideoPose3D
[CVPR-2020] Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
https://www.youtube.com/watch?v=8mgD8JxBOus&app=desktop
Paper: https://arxiv.org/abs/2002.11616
Code: https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020
- Video2X
Upscaling software
Code: https://github.com/k4yt3x/video2x
How to write a just in time (JIT) compiler
https://github.com/spencertipping/jit-tutorial
https://eli.thegreenplace.net/2017/adventures-in-jit-compilation-part-1-an-interpreter/
https://softwareengineering.stackexchange.com/questions/29344/jit-compiler-for-c-c-and-the-likes
How to write a parser
https://stackoverflow.com/questions/1843502/c-create-a-parser
https://unclechromedome.org/c++-tutorials/expression-parser/index.html
https://algoland.wordpress.com/2013/12/29/a-tiny-parser-in-c/
https://www.toptal.com/c-plus-plus/creating-an-expression-parser-in-c-
How to write a scripting language
https://gamedev.stackexchange.com/questions/421/how-do-you-add-a-scripting-language-to-a-game
https://www.flipcode.com/archives/Implementing_A_Scripting_Engine-Part_1_Overview.shtml
http://gameprogrammingpatterns.com/bytecode.html
- CircleCI
circleci CI/CD : cycle implementation, cycle deployment Reduce the implementation time
https://circleci.com/
-
COLMAP COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline
https://colmap.github.io/ -
OpenSfM
OpenSfM is a Structure from Motion library written in Python
https://github.com/mapillary/OpenSfM
- Few-shot vid2vid
Translate a video sequence in another video sequence.
https://github.com/NVlabs/few-shot-vid2vid
- DAIN
Video frame interpolation to vary video frame rate.
Paper: https://sites.google.com/view/wenbobao/dain
Code: https://github.com/baowenbo/DAIN
- Deep Deterministic Policy Gradient
Specifically adapted for environments with continuous action spaces.
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
Code: https://github.com/cookbenjamin/DDPG
- Visdom
A flexible tool for creating, organizing, and sharing visualizations of live, rich data.
https://github.com/facebookresearch/visdom
- JupyterLab
A web-based user interface for Project Jupyter
https://jupyterlab.readthedocs.io/en/stable/ - Password/Token issue (forgotten/set new).
$ jupyter lab password
jupyter/notebook#2971
Note: In the case of notebook, please change lab with notebook. The console message informs about the encoded password location.
- Remote Desktop
AnyDesk. A remote desktop which can be used throw firewall.
https://anydesk.com/en - Tunnels to localhost
https://ngrok.com/
Read also: https://towardsdatascience.com/how-to-share-your-jupyter-notebook-in-3-lines-of-code-with-ngrok-bfe1495a9c0c
- CS480/680 Lecture 19: Attention and Transformer Networks (!!!)
https://www.youtube.com/watch?v=OyFJWRnt_AY&t=851s
-
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://arxiv.org/abs/2101.03961 -
T5: Text-To-Text Transfer Transformer
https://github.com/google-research/text-to-text-transfer-transformer -
Transformers for Image Recognition at Scale (!!!)
https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html
https://github.com/google-research/vision_transformer
-
Knowledge Distillation (Wiki)
https://en.wikipedia.org/wiki/Knowledge_distillation -
Knowledge Distillation: A Survey (2020)
https://arxiv.org/pdf/2006.05525.pdf
- Full implementation pytorch/tensorflow code with videos (youtube).
https://github.com/aladdinpersson/Machine-Learning-Collection
- C++ implementation
https://github.com/bluescarni/heyoka
https://bluescarni.github.io/heyoka/
https://www.reddit.com/r/cpp/comments/lkcjki/solving_differential_equations_with_llvm/
- Some additional information to install CUDA on a Linux device (Ubuntu).
https://gist.github.com/kmhofmann/cee7c0053da8cc09d62d74a6a4c1c5e4
- importlib: Library and code to import libraries at runtime.
https://stackoverflow.com/questions/3131217/error-handling-when-importing-modules
- Collection of paper on the topic
https://github.com/bismex/Awesome-person-re-identification
-- UNet
- UNet: semantic segmentation with PyTorch
https://github.com/milesial/Pytorch-UNet
-- Deep Learning
-
Awesome production machine learning
https://github.com/EthicalML/awesome-production-machine-learning#data-labelling-tools-and-frameworks -
Background Matting: The World is Your Green Screen
https://github.com/senguptaumd/Background-Matting -
Real-Time High-Resolution Background Matting
https://github.com/PeterL1n/BackgroundMattingV2
-- Convolutional
- Convolutional Neural Network Visualizations
This repository contains a number of convolutional neural network visualization techniques implemented in PyTorch.
https://github.com/utkuozbulak/pytorch-cnn-visualizations
- EOS
eos: A lightweight header-only 3D Morphable Face Model fitting library in modern C++11/14.
eos is a lightweight 3D Morphable Face Model fitting library that provides basic functionality to use face models
https://github.com/patrikhuber/eos
-- Pytorch
This repository provides tutorial code for deep learning researchers to learn PyTorch.
https://github.com/Khoronus/pytorch-tutorial
-- Tensorflow
- Face Recognition using Tensorflow
This is a TensorFlow implementation of the face recognizer described in the paper "FaceNet: A Unified Embedding for Face Recognition and Clustering"
https://github.com/KhoronusFork/facenet
-- Queue (C++)
- moodycamel::ConcurrentQueue
An industrial-strength lock-free queue for C++.
https://github.com/cameron314/concurrentqueue
-- C++ (C++11)
- Cereal
cereal - A C++11 library for serialization https://github.com/USCiLab/cereal
https://paperswithcode.com/method/normalizing-flows
https://github.com/janosh/awesome-normalizing-flows
https://github.com/VowpalWabbit/vowpal_wabbit
https://github.com/sxfduter/monocular-depth-estimation https://github.com/rvarun7777/FisheyeDistanceNet https://github.com/natowi/3D-Reconstruction-with-Deep-Learning-Methods https://github.com/ZhixinLai/3D-detection-with-monocular-RGB-image https://github.com/sxfduter/monocular-depth-estimation
https://github.com/svip-lab/PlanarReconstruction https://github.com/NVlabs/planercnn
https://github.com/AliaksandrSiarohin/pose-gan
https://github.com/rohitrango/Adversarial-Pose-Estimation
https://github.com/llcshappy/Monocular-3D-Human-Pose
https://github.com/yas-sim/human-pose-estimation-2d-demo
https://github.com/chaneyddtt/weakly-supervised-3d-pose-generator
https://github.com/vchoutas/expose
https://github.com/mks0601/3DMPPE_POSENET_RELEASE
https://github.com/isarandi/metrabs
https://esslab.jp/~ess/en/research/pose3d/ https://openaccess.thecvf.com/content_ECCVW_2018/papers/11132/Drover_Can_3D_Pose_be_Learned_from_2D_Projections_Alone_ECCVW_2018_paper.pdf
https://github.com/mhnasseri/sort_oh
https://github.com/princeton-vl/RAFT
https://github.com/Li-Chongyi/Lighting-the-Darkness-in-the-Deep-Learning-Era-Open
Online Learning https://github.com/VowpalWabbit/vowpal_wabbit
Exploration https://github.com/jangirrishabh/Overcoming-exploration-from-demos
Multi agent https://github.com/ai4ce/DiscoNet
Noise https://github.com/lmas/opensimplex
Meta learning https://github.com/learnables/learn2learn
https://github.com/BachiLi/redner
https://mitsuba2.readthedocs.io/en/latest/src/getting_started/intro.html