Get the full paper on Arxiv. This paper has been accepted by NeurIPS 2021 (Spotlight).
- Linux (Titan RTX)
- Python (3.6.6)
- torch (1.9.0+cu111)
- visdom (0.1.8.9)
- numpy (1.19.2)
- skimage (0.15.0)
- Yaml (5.4.1)
- cv2 (3.4.2)
- PIL (8.3.2)
- Create dataset
- train path/A/
- train path/B/
- val path/A/
- val path/B/
- The default data file form is .npy and normalized to [-1,1].
- Modify the parameters in the .yaml file as needed:
- bidirect: whether to use bidirectional network, corresponding to the C or NC mode in the paper.
- regist: whether the registration network is used, corresponding to the +R mode in the paper.
- noise_level: set to 0 if you do not want to use noise.
- port: port parameters of visdom.
- Default RegGAN mode (bidirect:False regist:True).
- Start visdom:
python -m visdom.server -p 6019
If other port parameters are used, you need to modify the port in yaml.
- Train:
python train.py
We provide Pix2pix, CycleGAN, RegGAN trained weights under the condition of Noise.0: https://drive.google.com/file/d/1xWXB9u6dQ9ZytmgQl_0ph4H_Ivtd41zJ/view?usp=sharing
- Pix2pix_noise0
- CycleGAN_noise0
- RegGAN_noise0
We provide some processed data for your convenience: https://drive.google.com/file/d/1PiTzGQEVV7NO4nPaHeQv61WgDxoD76nL/view?usp=sharing
If you find RegGAN useful in your research, please consider citing:
@inproceedings{
kong2021breaking,
title={Breaking the Dilemma of Medical Image-to-image Translation},
author={Lingke Kong and Chenyu Lian and Detian Huang and ZhenJiang Li and Yanle Hu and Qichao Zhou},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=C0GmZH2RnVR}
}