Image Super-Resolution for anime/fan-art using Deep Convolutional Neural Networks.
Demo-Application can be found at http://waifu2x.udp.jp/ .
Click to see the slide show.
waifu2x is inspired by SRCNN [1]. 2D character picture (HatsuneMiku) is licensed under CC BY-NC by piapro [2].
- [1] Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, "Image Super-Resolution Using Deep Convolutional Networks", http://arxiv.org/abs/1501.00092
- [2] "For Creators", http://piapro.net/en_for_creators.html
(maintenance)
- NVIDIA GPU (Compute Capability 3.0 or later)
- cutorch
- cunn
- cudnn
- graphicsmagick
- turbo
- md5
- uuid
NOTE: Turbo 1.1.3 has bug in file uploading. Please install from the master branch on github.
(on Ubuntu 14.04)
sudo apt-get install curl
curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-all | sudo bash
Google! Search keyword is "install cuda ubuntu" and "install cudnn ubuntu"
sudo luarocks install cutorch
sudo luarocks install cunn
sudo luarocks install cudnn
sudo apt-get install graphicsmagick libgraphicsmagick-dev
sudo luarocks install graphicsmagick
Test the waifu2x command line tool.
th waifu2x.lua
curl -O http://luajit.org/download/LuaJIT-2.0.4.tar.gz
tar -xzvf LuaJIT-2.0.4.tar.gz
cd LuaJIT-2.0.4
make
sudo make install
Install luarocks packages.
sudo luarocks install md5
sudo luarocks install uuid
Install turbo.
git clone https://github.com/kernelsauce/turbo.git
cd turbo
sudo luarocks make rockspecs/turbo-dev-1.rockspec
Please edit the first line in web.lua
.
local ROOT = '/path/to/waifu2x/dir'
Run.
th web.lua
View at: http://localhost:8812/
th waifu2x.lua -m noise -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 2 -i input_image.png -o output_image.png
th waifu2x.lua -m scale -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 2 -i input_image.png -o output_image.png
See also images/gen.sh
.
* avconv
is ffmpeg
on Ubuntu 14.04.
Extracting images and audio from a video. (range: 00:09:00 ~ 00:12:00)
mkdir frames
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 -r 24 -f image2 frames/%06d.png
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 audio.mp3
Generating a image list.
find ./frames -name "*.png" |sort > data/frame.txt
waifu2x (for example, noise reduction)
mkdir new_frames
th waifu2x.lua -m noise -noise_level 1 -resume 1 -l data/frame.txt -o new_frames/%d.png
Generating a video from waifu2xed images and audio.
avconv -f image2 -r 24 -i new_frames/%d.png -i audio.mp3 -r 24 -vcodec libx264 -crf 16 video.mp4
Genrating a file list.
find /path/to/image/dir -name "*.png" > data/image_list.txt
(You should use PNG! In my case, waifu2x is trained with 3000 high-resolution-beautiful-PNG images.)
Converting training data.
th convert_data.lua
th train.lua -method noise -noise_level 1 -test images/miku_noisy.png
th cleanup_model.lua -model models/noise1_model.t7 -oformat ascii
You can check the performance of model with models/noise1_best.png
.
th train.lua -method noise -noise_level 2 -test images/miku_noisy.png
th cleanup_model.lua -model models/noise2_model.t7 -oformat ascii
You can check the performance of model with models/noise2_best.png
.
th train.lua -method scale -scale 2 -test images/miku_small.png
th cleanup_model.lua -model models/scale2.0x_model.t7 -oformat ascii
You can check the performance of model with models/scale2.0x_best.png
.