Implementation of DMM, Kohei Obata, Koki Kawabata, Yasuko Matsubara, Yasushi Sakurai. The Web Conference 2024, WWW'24.
- Install Python 3.8, and the required dependencies.
- Required dependencies can be installed by:
pip install -r requirements.txt
pip install numpy
pip install pandas
pip install matplotlib
pip install sklearn
cd data
python Synthetic.py
Download the Beijing Multi-Site Air-Quality Data Data Set from UCI. Move them into the data folder. (/DMM/data/PRSA_Data_20130301-20170228)
(/DMM/data/google/commerce)
python experiment_synthetic.py
python experiment_realdata.py
If you use this code for your research, please consider citing our WWW paper.
@inproceedings{10.1145/3589334.3645461,
author = {Obata, Kohei and Kawabata, Koki and Matsubara, Yasuko and Sakurai, Yasushi},
title = {Dynamic Multi-Network Mining of Tensor Time Series},
year = {2024},
isbn = {9798400701719},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3589334.3645461},
doi = {10.1145/3589334.3645461},
booktitle = {Proceedings of the ACM on Web Conference 2024},
pages = {4117–4127},
numpages = {11},
keywords = {clustering, graphical lasso, network inference, tensor time series},
location = {, Singapore, Singapore, },
series = {WWW '24}
}