/esupar

Tokenizer POS-Tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models for Japanese and other languages

Primary LanguagePythonMIT LicenseMIT

Current PyPI packages

esupar

Tokenizer, POS-tagger, and dependency-parser with Transformers and SuPar.

Basic usage

>>> import esupar
>>> nlp=esupar.load("ja")
>>> doc=nlp("太郎は花子が読んでいる本を次郎に渡した")
>>> print(doc)
1	太郎	_	PROPN	_	_	12	nsubj	_	SpaceAfter=No
2		_	ADP	_	_	1	case	_	SpaceAfter=No
3	花子	_	PROPN	_	_	5	nsubj	_	SpaceAfter=No
4		_	ADP	_	_	3	case	_	SpaceAfter=No
5	読ん	_	VERB	_	_	8	acl	_	SpaceAfter=No
6		_	SCONJ	_	_	5	mark	_	SpaceAfter=No
7	いる	_	AUX	_	_	5	aux	_	SpaceAfter=No
8		_	NOUN	_	_	12	obj	_	SpaceAfter=No
9		_	ADP	_	_	8	case	_	SpaceAfter=No
10	次郎	_	PROPN	_	_	12	obl	_	SpaceAfter=No
11		_	ADP	_	_	10	case	_	SpaceAfter=No
12	渡し	_	VERB	_	_	0	root	_	SpaceAfter=No
13		_	AUX	_	_	12	aux	_	_

>>> import deplacy
>>> deplacy.render(doc,Japanese=True)
太郎 PROPN ═╗<════════╗ nsubj(主語)
   ADP   <╝         ║ case(格表示)
花子 PROPN ═╗<══╗     ║ nsubj(主語)
   ADP   <╝   ║     ║ case(格表示)
読ん VERB  ═╗═╗═╝<╗   ║ acl(連体修飾節)
   SCONJ <╝ ║   ║   ║ mark(標識)
いる AUX   <══╝   ║   ║ aux(動詞補助成分)
   NOUN  ═╗═════╝<╗ ║ obj(目的語)
   ADP   <╝       ║ ║ case(格表示)
次郎 PROPN ═╗<╗     ║ ║ obl(斜格補語)
   ADP   <╝ ║     ║ ║ case(格表示)
渡し VERB  ═╗═╝═════╝═╝ root()
   AUX   <aux(動詞補助成分)

esupar.load(model) loads a natural language processor pipeline, working on Universal Dependencies. Available model options are:

Installation for Linux

pip3 install esupar --user

Installation for Cygwin64

Make sure to get python37-devel python37-pip python37-cython python37-numpy python37-wheel gcc-g++ mingw64-x86_64-gcc-g++ git curl make cmake, and then:

curl -L https://raw.githubusercontent.com/KoichiYasuoka/CygTorch/master/installer/supar.sh | sh
pip3.7 install esupar

Installation for Google Colaboratory

!pip install esupar

Try notebook.

Author

Koichi Yasuoka (安岡孝一)