Here we show our work, Target-X, compared to two other adversarial attacks, T-FGSM and T-UAP. We compare with four metrics:
- Af, denoting the average prediction accuracy of the architecture on the original images.
- Pf, denoting the average robustness of the perturbations on the the prediction accuracy of the architecture.
- Tf, denoting the success rate of targeted perturbations.
- Ef, denoting the average execution time.
Four tables are given, each showing the result of testing with different perturbation sizes (Ɛ). Areas where Target-X outperforms other techniques are shown in bold.
Algorithm | Architecture | Af | Pf | Tf | Ef |
---|---|---|---|---|---|
Target-X | AlexNet | 0.573 | 0.302 | 0.596 | 0.7754 |
DenseNet-201 | 0.766 | 0.184 | 0.803 | 3.9975 | |
GoogleNet | 0.697 | 0.129 | 0.859 | 0.8496 | |
ResNet-34 | 0.739 | 0.108 | 0.867 | 2.4447 | |
Resnet-101 | 0.775 | 0.155 | 0.824 | 0.8557 | |
VGG-19 | 0.730 | 0.292 | 0.618 | 2.7172 | |
T-FGSM | AlexNet | 0.573 | 0.568 | 0.0380 | 0.0187 |
DenseNet-201 | 0.766 | 0.762 | 0.0418 | 0.1566 | |
GoogleNet | 0.697 | 0.694 | 0.0520 | 0.0466 | |
ResNet-34 | 0.739 | 0.730 | 0.0528 | 0.0840 | |
ResNet-101 | 0.775 | 0.772 | 0.0492 | 0.0350 | |
VGG-19 | 0.730 | 0.725 | 0.0550 | 0.0723 | |
T-UAP | AlexNet | 0.573 | 0.573 | 0.0110 | 0.4741 |
DenseNet-201 | 0.766 | 0.766 | 0.0150 | 3.9476 | |
GoogleNet | 0.697 | 0.697 | 0.0120 | 1.1437 | |
ResNet-34 | 0.739 | 0.739 | 0.0080 | 2.0902 | |
ResNet-101 | 0.775 | 0.775 | 0.0012 | 0.8952 | |
VGG-19 | 0.730 | 0.730 | 0.0080 | 1.7886 |
Algorithm | Architecture | Af | Pf | Tf | Ef |
---|---|---|---|---|---|
Target-X | AlexNet | 0.573 | 0.066 | 0.941 | 0.2242 |
DenseNet-201 | 0.766 | 0.029 | 0.991 | 0.8817 | |
GoogleNet | 0.697 | 0.036 | 0.986 | 0.1952 | |
ResNet-34 | 0.739 | 0.026 | 0.992 | 0.5791 | |
Resnet-101 | 0.775 | 0.032 | 0.983 | 0.1760 | |
VGG-19 | 0.730 | 0.080 | 0.887 | 1.0760 | |
T-FGSM | AlexNet | 0.573 | 0.464 | 0.4048 | 0.0184 |
DenseNet-201 | 0.766 | 0.547 | 0.4332 | 0.1568 | |
GoogleNet | 0.697 | 0.476 | 0.4818 | 0.0461 | |
ResNet-34 | 0.739 | 0.461 | 0.5094 | 0.0844 | |
ResNet-101 | 0.775 | 0.535 | 0.4498 | 0.0348 | |
VGG-19 | 0.730 | 0.449 | 0.5300 | 0.0734 | |
T-UAP | AlexNet | 0.573 | 0.573 | 0.0090 | 0.4629 |
DenseNet-201 | 0.766 | 0.766 | 0.0100 | 3.9603 | |
GoogleNet | 0.697 | 0.697 | 0.0100 | 1.1440 | |
ResNet-34 | 0.739 | 0.739 | 0.0120 | 2.0899 | |
ResNet-101 | 0.775 | 0.775 | 0.0130 | 0.8991 | |
VGG-19 | 0.730 | 0.730 | 0.0100 | 1.7888 |
Algorithm | Architecture | Af | Pf | Tf | Ef |
---|---|---|---|---|---|
Target-X | AlexNet | 0.573 | 0.038 | 0.980 | 0.0831 |
DenseNet-201 | 0.766 | 0.022 | 0.997 | 0.3809 | |
GoogleNet | 0.697 | 0.030 | 0.996 | 0.0989 | |
ResNet-34 | 0.739 | 0.022 | 0.996 | 0.2766 | |
Resnet-101 | 0.775 | 0.022 | 0.993 | 0.0883 | |
VGG-19 | 0.730 | 0.054 | 0.923 | 0.5926 | |
T-FGSM | AlexNet | 0.573 | 0.062 | 0.9620 | 0.0186 |
DenseNet-201 | 0.766 | 0.122 | 0.9010 | 0.1565 | |
GoogleNet | 0.697 | 0.107 | 0.9164 | 0.0458 | |
ResNet-34 | 0.739 | 0.077 | 0.9410 | 0.0838 | |
ResNet-101 | 0.775 | 0.161 | 0.8590 | 0.0349 | |
VGG-19 | 0.730 | 0.075 | 0.9456 | 0.0701 | |
T-UAP | AlexNet | 0.573 | 0.573 | 0.0110 | 0.4631 |
DenseNet-201 | 0.766 | 0.766 | 0.0100 | 3.9629 | |
GoogleNet | 0.697 | 0.697 | 0.0090 | 1.1443 | |
ResNet-34 | 0.739 | 0.739 | 0.0090 | 2.0854 | |
ResNet-101 | 0.775 | 0.775 | 0.0090 | 0.9002 | |
VGG-19 | 0.730 | 0.731 | 0.0120 | 1.7865 |
Algorithm | Architecture | Af | Pf | Tf | Ef |
---|---|---|---|---|---|
Target-X | AlexNet | 0.573 | 0.034 | 0.981 | 0.0826 |
DenseNet-201 | 0.766 | 0.024 | 0.999 | 0.3818 | |
GoogleNet | 0.697 | 0.027 | 0.996 | 0.1059 | |
ResNet-34 | 0.739 | 0.027 | 0.997 | 0.3043 | |
Resnet-101 | 0.775 | 0.024 | 0.993 | 0.0917 | |
VGG-19 | 0.730 | 0.041 | 0.949 | 0.5616 | |
T-FGSM | AlexNet | 0.573 | 0.024 | 0.9838 | 0.0184 |
DenseNet-201 | 0.766 | 0.145 | 0.8740 | 0.1569 | |
GoogleNet | 0.697 | 0.131 | 0.8864 | 0.0458 | |
ResNet-34 | 0.739 | 0.093 | 0.9224 | 0.0840 | |
ResNet-101 | 0.775 | 0.185 | 0.8262 | 0.0351 | |
VGG-19 | 0.730 | 0.067 | 0.9474 | 0.0702 | |
T-UAP | AlexNet | 0.573 | 0.572 | 0.0100 | 0.4628 |
DenseNet-201 | 0.766 | 0.765 | 0.0120 | 3.9903 | |
GoogleNet | 0.697 | 0.697 | 0.0110 | 1.1463 | |
ResNet-34 | 0.739 | 0.739 | 0.0090 | 2.0850 | |
ResNet-101 | 0.775 | 0.775 | 0.0090 | 0.9007 | |
VGG-19 | 0.730 | 0.730 | 0.0090 | 1.7874 |
To clone the repository us the following:
git clone https://github.com/nssrlab/target-x.git <DESTINATION>
Where <DESTINATION>
is the folder you want Target-X to reside in.
To create a conda environment to run the project in, use the provided environment.yml
in the following command:
conda env create -f environment.yml -n <ENVIRONMENT_NAME>
Where <ENVIRONMENT_NAME>
is the name you want to use for the conda environment.
@INPROCEEDINGS{10197071,
author={Khamaiseh, Samer Y. and Bagagem, Derek and Al-Alaj, Abdullah and Mancino, Mathew and Alomari, Hakem and Aleroud, Ahmed},
booktitle={2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)},
title={Target-X: An Efficient Algorithm for Generating Targeted Adversarial Images to Fool Neural Networks},
year={2023},
volume={},
number={},
pages={617-626},
keywords={Training;Image recognition;Perturbation methods;Force;Artificial neural networks;Computer architecture;Robustness;adversarial images;deep learning;image classification neural networks;adversarial deep neural networks},
doi={10.1109/COMPSAC57700.2023.00087}}