LH1217's Stars
freefq/free
翻墙、免费翻墙、免费科学上网、免费节点、免费梯子、免费ss/v2ray/trojan节点、蓝灯、谷歌商店、翻墙梯子
Pawdroid/Free-servers
🚀 免费订阅地址,🚀 免费节点,🚀 6小时更新一次,共享节点,节点质量高可用,完全免费。免费clash订阅地址,免费翻墙、免费科学上网、免费梯子、免费ss/v2ray/trojan节点、谷歌商店、翻墙梯子。🚀 Free subscription address, 🚀 Free node, 🚀 Updated every 6 hours, shared node, high-quality node availability, completely free. Free clash subscription address, free ss/v2ray/trojan node.
Henryhaohao/Bilibili_video_download
:rainbow:Bilibili_video_download-B站视频下载
sudharsan13296/Hands-On-Meta-Learning-With-Python
Learning to Learn using One-Shot Learning, MAML, Reptile, Meta-SGD and more with Tensorflow
yuhuage/dizhi
雨花阁
bhanML/Co-teaching
NeurIPS'18: Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
tslgithub/image_class
基于keras集成多种图像分类模型: VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、ResNet18、ResNet34、ResNet50、ResNet_101、ResNet_152、DenseNet
google/mentornet
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
buds-lab/building-data-genome-project-2
Whole building non-residential hourly energy meter data from the Great Energy Predictor III competition
follow666/javlib.com_javlibrary.com
最新JAVLibrary图书馆地址发布页!2024年已更新,实时发布JAV图书馆最新地址_最新JAVlib图书馆防屏蔽地址_进入JAV图书馆最新可访问地址_JAVLibrary图书馆永久更新地址_JAVLibrary.com最新地址_javlib.com发布页地址
hongxin001/JoCoR
CVPR'20: Combating Noisy Labels by Agreement: A Joint Training Method with Co-Regularization
udibr/noisy_labels
TRAINING DEEP NEURAL-NETWORKS USING A NOISE ADAPTATION LAYER
marload/ConvNets-TensorFlow2
⛵️ Implementation a variety of popular Image Classification Models using TensorFlow2. [ResNet, GoogLeNet, VGG, Inception-v3, Inception-v4, MobileNet, MobileNet-v2, ShuffleNet, ShuffleNet-v2, etc...]
xingruiyu/coteaching_plus
ICML'19 How does Disagreement Help Generalization against Label Corruption?
bubbliiiing/Siamese-tf2
这是一个孪生神经网络(Siamese network)的库,可进行图片的相似性比较。
schatty/prototypical-networks-tf
Implementation of Prototypical Networks for Few-shot Learning in TensorFlow 2.0
acmi-lab/PU_learning
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)
GarrettLee/label_noise_correction
Implementation of paper: Making Deep Neural Network Robust to Label Noise: a Loss Correction Approach.
dr-darryl-wright/Noisy-Labels-with-Bootstrapping
Keras implementation of Training Deep Neural Networks on Noisy Labels with Bootstrapping, Reed et al. 2015
emalach/UpdateByDisagreement
code for paper Decoupling "when to update" from "how to update" [https://arxiv.org/abs/1706.02613]
Trotts/Siamese-Neural-Network-MNIST-Triplet-Loss
An example notebook showing the use of a Siamese Neural Network with a triplet loss function trained on MNIST
Youguang-Zhou/bilibili-dl
Bilibili-dl 是一个下载 B 站音视频的工具(目前视频下载最高只支持720P)
songhwanjun/Co-teaching
sauravjoshi23/SiameseNet-Loss
Text Classification Using Siamese Neural Networks - Contrastive Loss, Triplet Loss. This architecture works well when the training data is less.
26hzhang/CoTeaching
A TensorFlow implementation of "Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels"
ari-dasci/S-RAFNI
bianjiang1234567/CoTeaching_plus_plus
Mestrace/co-teaching
EECS 600 Final Project: Co-teaching Improvements
Connor666/Face_Siamese_network
Face_Siamese_network
sayan0506/Siamese-Network-Implementation-On-MNIST-Data-Using-Keras
Siamese Network With Triplet Loss Implementation On MNIST Data Using Keras