本项目提供了对google的tensorflow下的强化学框架的notebook中文翻译版本
原项目地址:https://github.com/tensorflow/agents
本项目使用jupyter notebook作为主要开发工具,其中涉及到一些Latex公式可能无法直接在其中显示,但安装一些插件之后将会使得jupyter notebook更加强大,具体安装教程链接如下:
【神器】Noteboke好用的插件推荐:https://mp.weixin.qq.com/s/hIDi0jwiPbaAuaWMbovRMQ
教程目录
在TF-Agent中,RL算法的核心元素被实现为Agent。 Agent承担两项主要职责:定义与环境交互的策略,以及如何从收集的经验中学习/训练该策略。
当前,TF-Agents提供以下算法:
-
DQN: Human level control through deep reinforcement learning Mnih et al., 2015
-
DDQN: Deep Reinforcement Learning with Double Q-learning Hasselt et al., 2015
-
DDPG: Continuous control with deep reinforcement learning Lillicrap et al., 2015
-
TD3: Addressing Function Approximation Error in Actor-Critic Methods Fujimoto et al., 2018
-
PPO: Proximal Policy Optimization Algorithms Schulman et al., 2017
安装命令
# Installing with the `--upgrade` flag ensures you'll get the latest version.
pip install --user --upgrade tf-agents-nightly # depends on tf-nightly
持续更新中·····
请使用原仓库中的引用:
@misc{TFAgents,
title = {{TF-Agents}: A library for Reinforcement Learning in TensorFlow},
author = "{Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez,
Pablo Castro, Ethan Holly, Sam Fishman, Ke Wang, Ekaterina Gonina, Neal Wu,
Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor Bartók, Jesse Berent,
Chris Harris, Vincent Vanhoucke, Eugene Brevdo}",
howpublished = {\url{https://github.com/tensorflow/agents}},
url = "https://github.com/tensorflow/agents",
year = 2018,
note = "[Online; accessed 25-June-2019]"
}