Weijie Li, Xinhang Song, Yubing Bai, Sixian Zhang, Shuqiang Jiang. 29th ACM International Conference on Multimedia (ACM Multimedia 2021), Chengdu, China, October 20-24, 2021.
ION (Instance-level Object Navigation) is a task which requires the agent to find the specific target, given the instance-level descriptions <category, color, material, reference>. The ION dataset is built for this task based on the AI2THOR simulator.
- Clone this repository and go into this project
git clone https://github.com/LWJ312/ION.git
cd ION
- Setup the conda environment and install other dependencies
conda create --name objnav python=3.6
conda activate objnav
pip install -r requirements.txt
-
Prepare the ION dataset.
- Download from the link ION_dataset (~63G) , and extract into the
ION/ION_dataset
folder. Note that the whole dataset is offline sampled, including 600 rooms. The whole decompressed dataset is about 140 G. - The right ION_dataset folder should look like:
ION_dataset/ └── FloorPlan1-1/ │ ├── TopView.jpg │ ├── allObject.json │ ├── grid.json │ ├── graph.json │ ├── bbox.json │ ├── specificSpawn.json │ ├── resnet18_featuremap.hdf5 │ ├── detect_att.hdf5 │ ├── class_masks.hdf5 │ ├── ins_visible_location_bbox.json │ ├── nav_visible_location.json │ └── cate_visible_location_bbox.json ├── ... ├── FloorPlan1-5/ │ ├── ... ├── FloorPlan2-1/ │ ├── ... └── ...
- Download from the link ION_dataset (~63G) , and extract into the
- Base model
python main.py --title BaseModel --model BaseModel --workers 12 --gpu-ids 0
- IRG model
python main.py --title IRGModel --model IRGModel --workers 12 --gpu-ids 0
- IRGSemMap model
python main.py --title IRGSemMap --model IRGSemMap --workers 12 --gpu-ids 0
- Base model
# Instance-Localization metric
python full_eval.py --title BaseModel --model BaseModel --results-json Base_IL.json --gpu-ids 0 --select
# Instance-Navigation metric
python full_eval.py --title BaseModel --model BaseModel --results-json Base_IN.json --gpu-ids 0
# Category-Localization metric
python full_eval.py --title BaseModel --model BaseModel --results-json Base_CL.json --gpu-ids 0 --catelv --select
- IRG model
# Instance-Localization metric
python full_eval.py --title IRGModel --model IRGModel --results-json IRG_IL.json --gpu-ids 0 --select
# Instance-Navigation metric
python full_eval.py --title IRGModel --model IRGModel --results-json IRG_IN.json --gpu-ids 0
# Category-Localization metric
python full_eval.py --title IRGModel --model IRGModel --results-json IRG_CL.json --gpu-ids 0 --catelv --select
- IRGSemMap model
# Instance-Localization metric
python full_eval.py --title IRGSemMap --model IRGSemMap --results-json IRGSemMap_IL.json --gpu-ids 0 --select
# Instance-Navigation metric
python full_eval.py --title IRGSemMap --model IRGSemMap --results-json IRGSemMap_IN.json --gpu-ids 0
# Category-Localization metric
python full_eval.py --title IRGSemMap --model IRGSemMap --results-json IRGSemMap_CL.json --gpu-ids 0 --catelv --select
If you use ION in your research, please cite the following:
@inproceedings{DBLP:conf/mm/LiSBZJ21,
author = {Weijie Li and
Xinhang Song and
Yubing Bai and
Sixian Zhang and
Shuqiang Jiang},
editor = {Heng Tao Shen and
Yueting Zhuang and
John R. Smith and
Yang Yang and
Pablo Cesar and
Florian Metze and
Balakrishnan Prabhakaran},
title = {{ION:} Instance-level Object Navigation},
booktitle = {{MM} '21: {ACM} Multimedia Conference, Virtual Event, China, October
20 - 24, 2021},
pages = {4343--4352},
publisher = {{ACM}},
year = {2021},
url = {https://doi.org/10.1145/3474085.3475575},
doi = {10.1145/3474085.3475575},
timestamp = {Wed, 20 Oct 2021 12:40:01 +0200},
biburl = {https://dblp.org/rec/conf/mm/LiSBZJ21.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}