Trady is a handy library for computing technical indicators, and targets to be an automated trading system that provides stock data feeding, indicator computing, strategy building and automatic trading. It is built based on .NET Standard 2.0.
This library is a hobby project, and would probably making breaking changes, use with care when in production.
- Stock data feeding (via CSV File, Quandl.NET, YahooFinanceApi, StooqApi, Nuba.Finance.Google)
- Indicator computing (including SMA, EMA, RSI, MACD, BB, etc.)
- Signal capturing by rules
- Strategy backtesting by buy/sell rule
Please refer to another markdown document here
- .NET Core 2.0 or above
- .NET Framework 4.6.1 or above
- Mono 5.4 or above
- Xamarin.iOS 10.4 or above
- Xamarin.Android 7.5 or above
- Xamarin.Mac 3.8 or above
Please refer to another markdown document here
Nuget package is available in modules, please install the package according to the needs
// For importing
PM > Install-Package Trady.Importer
// For computing & backtesting
PM > Install-Package Trady.Analysis
-
Tldr
-
Importing
-
Computing
-
Backtesting
-
Advanced
var importer = new YahooFinanceImporter();
var candles = await importer.ImportAsync("FB");
var last = candles.Sma(30).Last();
Console.WriteLine($"{last.DateTime}, {last.Tick}");
// From Quandl wiki database
var importer = new QuandlWikiImporter(apiKey);
// From Yahoo Finance
var importer = new YahooFinanceImporter();
// From Stooq
var importer = new StooqImporter();
// From Google Finance
var importer = new GoogleFinanceImporter();
// Or from dedicated csv file
var importer = new CsvImporter("FB.csv");
// Get stock data from the above importer
var candles = await importer.ImportAsync("FB");
// Transform the series for computation, downcast is forbidden
// Supported period: PerSecond, PerMinute, Per15Minutes, Per30Minutes, Hourly, BiHourly, Daily, Weekly, Monthly
var transformedCandles = candles.Transform<Daily, Weekly>();
// This library supports computing from tuples or candles, extensions are recommended for computing
var closes = new List<decimal>{ ... };
var smaTs = closes.Sma(30);
var sma = closes.Sma(30)[index];
// or, traditional call
var sma = new SimpleMovingAverageByTuple(closes, 30)[index];
// the corresponding version of candle
var sma = new SimpleMovingAverage(candles, 30)[index];
// Simple operation on indicator is supported, now supports only diff, pcDiff, sma, sd
var closes = new List<decimal>{ ... };
var smaDiff = closes.Sma(30).Diff(index); // i-th term - (i-1)-th term
var smaSma = closes.Sma(30).Sma(10, index); // average(n items)
var smaPcDiff = closes.Sma(30).PcDiff(index); // (i-th term - (i-1)-th term) / (i-1)-th term * 100
var smaSd = closes.Sma(30).Sd(10, 2, index);
// This also applies to candles
// Sometimes, we want to utilize the Analyzable infra for some simple indicators but doesn't want to implement a new class, we are adding AsAnalyzable for conversion from Func
// Before conversion, on the very top of your file, you should add
using AFunc = System.Func<System.Collections.Generic.IReadOnlyList<Trady.Core.Candle>, int, System.Collections.Generic.IReadOnlyList<decimal>, Trady.Core.Infrastructure.IAnalyzeContext<Trady.Core.Candle>, decimal?>;
// And use it in your code
AFunc aFunc = (c, i, p, ctx) => c[i].High - c[i].Low; // The four parameters: candles, index, parameters, context
var aFuncInstance = aFunc.AsAnalyzable(candles);
var a = aFuncInstance[index];
// You may also combine with simple operation computation
var aSma = aFuncInstance.Sma(30, index);
// To use your func globally for analysis, you can register you func by using FuncRegistry.Register method
// The four parameters is the same as the above section, namely: candles, index, parameters, context
FuncRegistry.Register("modified_sma", (c, i, p, ctx) => ctx.Get<SimpleMovingAverage>(p[0])[i].Tick);
// You can use your func globally using the extension
var lastModifiedSmaValue = candles.Func("modified_sma", 10)[candles.Count() - 1];
// The library also support register by plain text expression, you can dynamically create an analyzable as follows:
// Please notice that you must follow the naming convention: c, i, p, ctx when using this approach
FuncRegistry.Register("dy_sma", "var sma = ctx.Get<SimpleMovingAverage>(10); return sma[i].Tick;");
// And the use case is similar:
var lastModifiedSmaValue = candles.Func("modified_sma")[candles.Count() - 1];
// The following shows the number of candles that fulfill both the IsAboveSma(30) & IsAboveSma(10) rule
var rule = Rule.Create(c => c.IsAboveSma(30))
.And(c => c.IsAboveSma(10));
// Use context here for caching indicator results
using (var ctx = new AnalyzeContext(candles))
{
var validObjects = new SimpleRuleExecutor(ctx, rule).Execute();
Console.WriteLine(validObjects.Count());
}
// Build buy rule & sell rule based on various patterns
var buyRule = Rule.Create(c => c.IsFullStoBullishCross(14, 3, 3))
.And(c => c.IsMacdOscBullish(12, 26, 9))
.And(c => c.IsSmaOscBullish(10, 30))
.And(c => c.IsAccumDistBullish());
var sellRule = Rule.Create(c => c.IsFullStoBearishCross(14, 3, 3))
.Or(c => c.IsMacdBearishCross(12, 24, 9))
.Or(c => c.IsSmaBearishCross(10, 30));
// Create portfolio instance by using PortfolioBuilder
var runner = new Builder()
.Add(equity, 10)
.Add(equity2, 30)
.Buy(buyRule)
.Sell(sellRule)
.Build();
// Start backtesting with the portfolio
var result = await runner.RunAsync(10000, 1);
// Get backtest result for the portfolio
Console.WriteLine(string.Format("Transaction count: {0:#.##}, P/L ratio: {1:0.##}%, Principal: {2:#}, Total: {3:#}",
result.TransactionCount,
result.ProfitLossRatio * 100,
result.Principal,
result.Total));
// Implement your pattern by creating a static class for extending IndexedCandle class
public static class IndexedCandleExtension
{
public static bool IsEma10Rising(this IndexedCandle ic)
=> ic.Get<ExponentialMovingAverage>(10).Diff(ic.Index).Tick.IsPositive();
public static bool IsEma10Dropping(this IndexedCandle ic)
=> ic.Get<ExponentialMovingAverage>(10).Diff(ic.Index).Tick.IsNegative();
public static bool IsEma10BullishCrossEma30(this IndexedCandle ic)
=> ic.Get<ExponentialMovingAverageOscillator>(10, 30).ComputeNeighbour(ic.Index).IsTrue(
(prev, current, next) => prev.Tick.IsNegative() && current.Tick.IsPositive());
public static bool IsEma10BearishCrossEma30(this IndexedCandle ic)
=> ic.Get<ExponentialMovingAverageOscillator>(10, 30).ComputeNeighbour(ic.Index).IsTrue(
(prev, current, next) => prev.Tick.IsPositive() && current.Tick.IsNegative());
}
// Use case
var buyRule = Rule.Create(c => c.IsEma10BullishCrossEma30()).And(c => c.IsEma10Rising());
var sellRule = Rule.Create(c => c.IsEma10BearishCrossEma30()).Or(c => c.IsEma10Dropping());
var runner = new Builder().Add(candles, 10).Buy(buyRule).Sell(sellRule).Build();
var result = await runner.RunAsync(10000, 1);
// To use your rule in global, you may register it by using RuleRegistry.Register method
RuleRegistry.Register("IsBelowSmaX", (ic, p) => ic.Get<SimpleMovingAverage>(p[0])[ic.Index].Tick.IsTrue(t => t > ic.Close));
// Or, using plain text
RuleRegistry.Register("IsBelowSma30", "ic.Get<SimpleMovingAverage>(30)[ic.Index].Tick.IsTrue(t => t > ic.Close)");
// Call it using GetRule method from AnalyzeContext
using (var ctx = new AnalyzeContext(candles))
{
var ruleX = ctx.GetRule("IsBelowSmaX", 30); // Substitute parameter to the rule
var rule30 = ctx.GetRule("IsBelowSma30");
var isAboveSma30Candles = new SimpleRuleExecutor(ctx, ruleX).Execute();
}
// You can also implement your own importer by implementing the IImporter interface
public class MyImporter : IImporter
{
public async Task<IReadOnlyList<Candle>> ImportAsync(string symbol, DateTime? startTime = null, DateTime? endTime = null, PeriodOption period = PeriodOption.Daily, CancellationToken token = default(CancellationToken))
{
// Your implementation to return a list of candles
}
}
// Use case
var importer = new MyImporter();
var candles = await importer.ImportAsync("FB");
// You can also implement your own indicator by extending the AnalyzableBase<TInput, TOutput> class
public class MyIndicator : AnalyzableBase<Candle, AnalyzableTick<decimal?>>
{
// Backing indicator for the indicator
SimpleMovingAverageByTuple _sma;
public MyIndicator(IEnumerable<Candle> inputs, int periodCount) : base(inputs)
{
// Initialize reference indicators, or other required stuff here
_sma = new SimpleMovingAverageByTuple(inputs.Select(i => i.Close), periodCount);
}
// Implement the compute algorithm, uses mappedInputs, index & backing indicators for computation here
protected override AnalyzableTick<decimal?> ComputeByIndexImpl(IReadOnlyList<Candle> mappedInputs, int index)
{
return new AnalyzableTick<decimal?>(mappedInputs[index].DateTime, _sma[index]);
}
}
// Use case
var results = new MyIndicator(candles, 30).Compute();
foreach (var r in results)
{
Console.WriteLine($"{r.DateTime}, {r.Tick.Value}");
}
// You can implement your own indicator by extending the CummulativeAnalyzableBase<TInput, TOutput> class
public class MyCumulativeIndicator : CumulativeAnalyzableBase<Candle, AnalyzableTick<decimal?>>
{
// Backing indicator for the indicator
SimpleMovingAverageByTuple _sma;
public MyCumulativeIndicator(IEnumerable<Candle> inputs, int periodCount) : base(inputs)
{
// Initialize reference indicators, or other required stuff here
_sma = new SimpleMovingAverageByTuple(inputs.Select(i => i.Close), periodCount);
}
// Implement the compute algorithm for index > InitialValueIndex, uses mappedInputs, index, prev analyzable tick & backing indicators for computation here
protected override AnalyzableTick<decimal?> ComputeCumulativeValue(IReadOnlyList<Candle> mappedInputs, int index, AnalyzableTick<decimal?> prevOutputToMap)
{
return new AnalyzableTick<decimal?>(mappedInputs[index].DateTime, _sma[index] + prevOutputToMap.Tick);
}
// Same for the above but for index = InitialValueIndex
protected override AnalyzableTick<decimal?> ComputeInitialValue(IReadOnlyList<Candle> mappedInputs, int index)
{
return new AnalyzableTick<decimal?>(mappedInputs[index].DateTime, _sma[index]);
}
// You can also override the InitialValueIndex property & ComputeNullValue method if needed
}
// Use case
var results = new MyCumulativeIndicator(candles).Compute();
foreach (var r in results)
{
Console.WriteLine($"{r.DateTime}, {r.Tick.Value}");
}
// You can make use of the GenericMovingAverage class to get rid of implementing MA-related indicator on your own
public class MyGmaIndicator : AnalyzableBase<Candle, AnalyzableTick<decimal?>>
{
GenericMovingAverage _gma;
public MyGmaIndicator(IEnumerable<Candle> inputs, int periodCount) : base(inputs)
{
// parameters: initialValueIndex, initialValueFunction, indexValueFunction, smoothingFactorFunction
_gma = new GenericMovingAverage(
i => inputs.Select(ip => ip.Close).ElementAt(i),
2.0m / (periodCount + 1),
inputs.Count());
}
protected override AnalyzableTick<decimal?> ComputeByIndexImpl(IReadOnlyList<Candle> mappedInputs, int index)
{
return new AnalyzableTick<decimal?>(mappedInputs[index].DateTime, _gma[index]);
}
}
- (✔) Dynamically create indicator & rule patterns from text, allows internal call to dynamic generated stuffs
- () Complete other indicators (e.g. Keltner Channels, MA Envelopes, etc.)
- () Complete candlestick patterns
- (-) Add more rule patterns
- () Data-feeding: Add broker adaptor for real-time trade (e.g. interactive broker, etc.)
- () Graphing: Generate stock chart by indicator values
- () Pipelining: Provide simple programming interface for pipelining the real-time process, i.e. Data-feeding -> decision making by auto rule evaluation -> call to broker for trade -> auto adjust trading strategy based on prev decisions made -> (loop)
- () REPL for dynamic indicator creation, rule creation, strategy making, backtesting, etc.
- State saver & loader
- MORE, MORE AND MORE!!!!
- CsvHelper (@JoshClose) : Great library for reading/ writing CSV file
This library is under Apache-2.0 License