/DiffSBDD

A Euclidean diffusion model for structure-based drug design.

Primary LanguagePythonMIT LicenseMIT

DiffSBDD: Structure-based Drug Design with Equivariant Diffusion Models

Official implementation of DiffSBDD, an equivariant model for structure-based drug design, by Arne Schneuing*, Yuanqi Du*, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell, Pietro Lió, Carla Gomes, Max Welling, Michael Bronstein & Bruno Correia.

arXiv Open In Colab

Dependencies

  • RDKit
  • PyTorch
  • BioPython
  • imageio
  • Scipy
  • wandb
  • torch-scatter
  • PyTorch Lightning
  • openbabel
  • QuickVina 2
  • MGLTools

Create a conda environment

conda create -n sbdd-env
conda activate sbdd-env
conda install pytorch cudatoolkit=10.2 -c pytorch
conda install -c conda-forge pytorch-lightning
conda install -c conda-forge wandb
conda install -c conda-forge rdkit
conda install -c conda-forge biopython
conda install -c conda-forge imageio
conda install -c anaconda scipy
conda install -c pyg pytorch-scatter
conda install -c conda-forge openbabel

The code was tested with the following versions

Software Version
Python 3.10.4
CUDA 10.2.89
PyTorch 1.12.1
PyTorch Lightning 1.7.4
WandB 0.13.1
RDKit 2022.03.2
BioPython 1.79
imageio 2.21.2
SciPy 1.7.3
PyTorch Scatter 2.0.9
OpenBabel 3.1.1

QuickVina 2

For docking, install QuickVina 2:

wget https://github.com/QVina/qvina/raw/master/bin/qvina2.1
chmod +x qvina2.1 

We need MGLTools for preparing the receptor for docking (pdb -> pdbqt) but it can mess up your conda environment, so I recommend to make a new one:

conda create -n mgltools -c bioconda mgltools

CrossDocked Benchmark

Data preparation

Download and extract the dataset as described by the authors of Pocket2Mol: https://github.com/pengxingang/Pocket2Mol/tree/main/data

Process the raw data using

python process_crossdock.py <crossdocked_dir> --no_H

Binding MOAD

Data preparation

Download the dataset

wget http://www.bindingmoad.org/files/biou/every_part_a.zip
wget http://www.bindingmoad.org/files/biou/every_part_b.zip
wget http://www.bindingmoad.org/files/csv/every.csv

unzip every_part_a.zip
unzip every_part_b.zip

Process the raw data using

python process_bindingmoad.py <bindingmoad_dir>

or, to suppress warnings,

python -W ignore process_bindingmoad.py <bindingmoad_dir>

Training

Starting a new training run:

python -u train.py --config <config>.yml

Resuming a previous run:

python -u train.py --config <config>.yml --resume <checkpoint>.ckpt

Inference

Sample molecules for a given pocket

To sample small molecules for a given pocket with a trained model use the following command:

python generate_ligands.py <checkpoint>.ckpt --pdbfile <pdb_file>.pdb --outdir <output_dir> --resi_list <list_of_pocket_residue_ids>

For example:

python generate_ligands.py last.ckpt --pdbfile 1abc.pdb --outdir results/ --resi_list A:1 A:2 A:3 A:4 A:5 A:6 A:7 

Alternatively, the binding pocket can also be specified based on a reference ligand in the same PDB file:

python generate_ligands.py <checkpoint>.ckpt --pdbfile <pdb_file>.pdb --outdir <output_dir> --ref_ligand <chain>:<resi>

Optional flags:

Flag Description
--n_samples Number of sampled molecules
--all_frags Keep all disconnected fragments
--sanitize Sanitize molecules (invalid molecules will be removed if this flag is present)
--relax Relax generated structure in force field
--resamplings Inpainting parameter (doesn't apply if conditional model is used)
--jump_length Inpainting parameter (doesn't apply if conditional model is used)

Sample molecules for all pockets in the test set

test.py can be used to sample molecules for the entire testing set:

python test.py <checkpoint>.ckpt --test_dir <bindingmoad_dir>/processed_noH/test/ --outdir <output_dir> --fix_n_nodes

Using the optional --fix_n_nodes flag lets the model produce ligands with the same number of nodes as the original molecule. Other optional flags are identical to generate_ligands.py.

Metrics

For assessing basic molecular properties create an instance of the MoleculeProperties class and run its evaluate method:

from analysis.metrics import MoleculeProperties
mol_metrics = MoleculeProperties()
all_qed, all_sa, all_logp, all_lipinski, per_pocket_diversity = \
    mol_metrics.evaluate(pocket_mols)

evaluate() expects a list of lists where the inner list contains all RDKit molecules generated for one pocket.

For computing docking scores, run QuickVina as described below.

QuickVina2

First, convert all protein PDB files to PDBQT files using MGLTools

conda activate mgltools
cd analysis
python docking_py27.py <bindingmoad_dir>/processed_noH/test/ <output_dir> bindingmoad
cd ..
conda deactivate

Then, compute QuickVina scores:

conda activate sbdd-env
python analysis/docking.py --pdbqt_dir <docking_py27_outdir> --sdf_dir <test_outdir> --out_dir <qvina_outdir> --write_csv --write_dict

Citation

@article{schneuing2022structure,
  title={Structure-based Drug Design with Equivariant Diffusion Models},
  author={Schneuing, Arne and Du, Yuanqi and Harris, Charles and Jamasb, Arian and Igashov, Ilia and Du, Weitao and Blundell, Tom and Li{\'o}, Pietro and Gomes, Carla and Welling, Max and others},
  journal={arXiv preprint arXiv:2210.13695},
  year={2022}
}